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respectively, exemplify these challenges.

Grammatical Error Correction (GEC) for low-
resource Indic languages remains challenging
due to limited annotated data and morpholog-
ical complexity. We present a hybrid neu-
rosymbolic GEC system that combines neu-
ral sequence-to-sequence models with explicit
language-specific rule-based pattern matching.
Our approach leverages parameter-efficient
LoRA adaptation on aggressively augmented
data to fine-tune pre-trained mT5 models, fol-
lowed by learned correction rules through intel-
ligent ensemble strategies. The proposed hy-
brid architecture achieved 85.34% GLEU for
Tamil (Rank 8) and 95.06% GLEU for Malay-
alam (Rank 2) on the provided IndicGEC test
sets, outperforming individual neural and rule-
based approaches. The system incorporates
conservative safety mechanisms to prevent
catastrophic deletions and over-corrections,
thus ensuring robustness and real-world ap-
plicability. Our work demonstrates that ex-
tremely low-resource GEC can be effectively
addressed by combining neural generalization
with symbolic precision.

1 Introduction

Grammatical Error Correction (GEC) focuses on
automatically detecting and correcting errors in
written text, including spelling mistakes, gram-
matical inconsistencies, punctuation errors, and
word choice issues. There has been substantial
research progressing with state-of-the-art results
for high-resource languages like English (Bryant
et al., 2019; Grundkiewicz et al., 2019). How-
ever, GEC for Indic languages face severe chal-
lenges from limited annotated sentence pairs, rich
inflectional morphology characteristic of aggluti-
native languages, and unique Indic script proper-
ties regarding Unicode representation and normal-
ization.

Tamil and Malayalam, Dravidian languages
with over 75 million and 38 million speakers

shared IndicGEC datasets exhibit extremely low-
resource settings, necessitating novel approaches
beyond standard neural fine-tuning (Bryant et al.,
2019). We present a hybrid neurosymbolic ar-
chitecture strategically combining neural and sym-
bolic approaches. The neural component provides
generalization to unseen error patterns through
mT5 models that are fine-tuned with LoRA (Xue et
al.,2021; Huetal., 2021), while the symbolic com-
ponent ensures high precision on known error pat-
terns through explicit rule extraction from training
data. The core innovation lies in the intelligent en-
semble that selectively applies exact matches, neu-
ral predictions, or rule-based corrections based on
input characteristics and multiple safety validation
mechanisms.
The key contributions of our work are:

* A Novel hybrid architecture that combines
neural sequence-to-sequence models with
pattern-based corrections for low-resource
GEC with conservative safety mechanisms.

» Language-specific data augmentation strat-
egy that generates up to 10,000 synthetic
examples from limited gold pairs using
morphology-aware noise injection.

* Robust Ensemble selection mechanism with
safety thresholds to prevent catastrophic dele-
tions, over-corrections, and output degenera-
tion.

The system successfully generated corrections
for test inputs, demonstrating that the hybrid ap-
proach effectively leverages limited training data
while prioritizing computational efficiency, the
preservation of output quality, and real-world de-
ployment through conservative correction strate-
gies.



2 Related Works

2.1 Grammatical Error Correction

Recent GEC research, especially for English,
has been dominated by neural approaches where
Transformer-based models and large pre-trained
models like BART and T5 achieved state-of-the-
art results (Zhao et al.,, 2019; Kaneko et al.,
2020; Katsumata and Komachi, 2020; Rothe et
al.,, 2021). However, these approaches require
substantial training data, say millions of examples
and computational resources. In low-resource lan-
guages like Tamil, there are few works that focus
on spelling errors and correction (Rajalakshmi, R
et al.,), but grammatical error correction is not ex-
plored much. Low-resource GEC remains chal-
lenging, with researchers exploring synthetic data
generation for Czech GEC (Naplava and Straka,
2019) and feedback comment generation for low-
resource languages (Flachs et al., 2021). Our work
differs from these by combining neural and sym-
bolic approaches with explicit safety mechanisms,
specifically, for extremely low-resource settings.

2.2 Multilingual and Indic Language GEC

Multilingual models such as mBART and mT5 ex-
hibit promising potential for cross-lingual transfer
(Liu et al., 2020; Xue et al., 2021). Complement-
ing this, Rothe et al. (2021) demonstrated that
mT5 fine-tuning can achieve competitive GEC per-
formance. However, direct application to Indic
languages with minimal data remains unexplored.
GEC for Indic languages is nascent, with most
prior work focusing primarily on spell-checking
rather than on comprehensive grammatical correc-
tion (Joshi et al., 2012). The shared IndicGEC
tasks represent one of the first systematic efforts
in this area. Our model is one among the first to
address Dravidian languages with a modern neural-
symbolic hybrid method incorporating robustness
mechanisms.

2.3 Hybrid NLP Systems

The neurosymbolic approach combines neural
learning with symbolic reasoning. Recent works
in this area, include neural symbolic parsers, hy-
brid question answering, and rule-augmented neu-
ral models (Platanios et al., 2021; Mitra and
Baral, 2016). For GEC specifically, Awasthi et
al. (2019) combined neural models with rule-
based post-editing for English. On the other hand,
our work extends hybrid methods to extremely

low-resource scenarios with explicit safety valida-
tion, demonstrating that explicit pattern extraction
from minimal training data combined with neural
generalization and conservative acceptance crite-
ria can achieve superior performance while pre-
venting common failure modes.

2.4 Parameter-Efficient Fine-Tuning

Hu et al. (2021) demonstrated that LoORA (Low-
Rank Adaptation) enables efficient fine-tuning by
injecting trainable low-rank matrices into frozen
pre-trained models, reducing trainable parameters
by over 99% while maintaining performance. Our
work leverages LoRA to fine-tune mT5-base and
mT5-small for Tamil and Malayalam GEC, respec-
tively, with limited training examples, enabling ef-
fective adaptation and preventing overfitting.

2.5 Language Model Selection for
Sequence-to-Sequence GEC

While monolingual BERT-based encoder models
exist for both Tamil (13cube-pune/tamil-bert) and
Malayalam (I3cube-pune/malayalam-bert), these
models are fundamentally unsuitable for GEC
tasks due to their encoder-only architecture. GEC
is inherently a sequence-to-sequence task requir-
ing both encoding input sentences and generating
corrected outputs, necessitating encoder-decoder
architectures like TS5 or BART.

BERT-based models, being encoder-only, can
only produce contextual representations and are
designed for classification, token labelling, or ex-
traction tasks rather than text generation. Adapt-
ing BERT for generation would require adding a
decoder component from scratch, essentially re-
constructing an encoder-decoder model without
the benefits of pre-trained generation capabili-
ties. Furthermore, no production-ready monolin-
gual T5-style encoder-decoder models exist for
Tamil or Malayalam in public repositories. While
researchers have created language-specific adapta-
tions by pruning multilingual models (e.g., Rus-
sian T5), similar efforts for Dravidian languages
remain unpublished or unavailable.

Therefore, we leverage mT5, a multilingual TS
variant pre-trained on 101 languages including
Tamil and Malayalam, which provides the neces-
sary encoder-decoder architecture for GEC while
offering cross-lingual transfer benefits from re-
lated languages. The mT5 family’s availability in
multiple sizes (small, base, large) enables capacity-
driven design choices suitable for our low-resource



setting, as demonstrated in our ablation studies
(Section 4.4).

3 System Architecture

We present differentiated frameworks for Tamil
and Malayalam GEC, reflecting language-specific
requirements. Figures 1 & 2 illustrate the complete
system workflows for Tamil and Malayalam lan-
guages respectively. This differentiation reflects
Tamil’s morphological complexity, which requires
greater model capacity, and Malayalam’s higher
observed risk of neural over-correction, requiring
conservative safety mechanisms.

3.1 Tamil GEC Architecture

The Tamil system employs a five-stage hierarchi-
cal pipeline that combines neural and symbolic
approaches strategically. First, marker extraction
isolates formatting elements (-, ;-) from core con-
tent using regex patterns, enabling focus on lin-
guistic content. Second, rule-based priority check-
ing matches queries against sentence templates and
training data; exact matches return stored correc-
tions immediately. Third, neural generation uses
mT5-base with LoRA adaptation, employing beam
search when no exact match exists. Fourth, pattern
enhancement applies 25+ manually curated Tamil
error patterns. Finally, marker reattachment deter-
ministically restores original formatting.
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Figure 1: Architecture Diagram for Tamil GEC

The innovative hierarchical correction strategy
operates at three junctures: pre-neural exact match-
ing for high-confidence corrections, post-neural
pattern application to enhance valid generations,
and rule-only fallback with similarity matching for
invalid outputs. The four tiers include: (1) exact
sentence matches from templates, (2) training data
matches offering perfect accuracy for 91 pairs, (3)
enhanced neural generation with pattern enhance-
ment for valid outputs, and (4) rule-only fallback
for truncated, degenerate, or empty outputs using
similarity-based matching.

The following Tamil example illustrates the cor-
rection process:

1. Input: thozhilsaalai  iyandhithithin
sattham (g;@a::»n@ﬁ)&rrsmsu
QubdHsHHeT  FHHLWD, “factory

mashine’s noise”).
2. Tier 1 (Rule Lookup): No template match.
3. Tier 2 (Exact Match): No training match.

4. Tier 3 (Neural Generation): The input is
passed to the neural model.

5. Pattern Enhancement:
the morphological error iyandhithith

(@wbSS). A manual rule is applied:
iyvandhithith — iyanthira (@ U_I[_B@ 7).

This step detects

6. Output: thozhilsaalai iyanthi-
rathin  sattham (g,@a::»rrgf]g')&rrsm@
@QubdHrssHler FHHWD, “factory ma-

chine’s noise™).
3.2 Malayalam GEC Architecture

The Malayalam system employs conservative par-
allel processing pipeline with safety-first ensem-
ble selection. The workflow begins with ex-
act match checking that validates inputs against
learned corrections. If matched, the system returns
the stored correction immediately, bypassing neu-
ral generation. When no exact match exists, the
system proceeds to parallel processing where neu-
ral generation using mT5-small with LoRA and
rule-based candidate preparation occur simultane-
ously. The neural output then undergoes com-
prehensive safety validation checking Malayalam
character presence, token overlap ratios, length ra-
tios, and deletion thresholds. Based on validation
results and similarity analysis, the ensemble selec-
tor chooses between the neural output, the rule-
based candidate, or falls back to the original input.
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Figure 2: Architecture diagram for Malayalam

The key innovation of Malayalam architecture
lies in its parallel processing, combined with con-
servative selection, rather than sequential trans-
formation. Both neural and rule-based compo-
nents process input independently, with final de-
cisions made through confidence-based ensemble
selection with multi-layered safety validation. The
safety mechanisms validate neural outputs against
multiple criteria: Malayalam character presence
(>1 character in U+0D00-U+0D7F), token over-
lap (>45% Jaccard similarity), length ratio (>50%
preservation unless overlap >90%), and deletion
ratio (>45% unless overlap >90%).

The following example illustrates the parallel
processing and ensemble decision-making within
the Malayalam pipeline:

1. Input: vaakanam odichchu (QU::06»6Mo
630Sl9J3, “vehikle drove”).

2. Initial Check: No exact match found in train-
ing data.

3. Parallel Processing:

e Neural Path: Generates vaahanam
odichchu (QU::0a0Mo 630SlaJ3, “vehi-
cle drove”).

* Rule-Based Path: Identifies the pat-
tern:  QU0H6Mo  (vaakanam) —
Ql::0a0Mo (vaahanam).

4. Safety Validation: The neural output passes
all checks (e.g., Malayalam chars >, 50% to-
ken overlap >, 100% length >, 0% deletion
>).

Table 1: Neural component configuration for Tamil and

Malayalam GEC (Grammatical Error Correction).

Component Tamil GEC Malayalam
GEC
Base Model mT5-base mT5-small
(580M Parame- | (300M Param-
ters, 12 layers, | eters, 8 layers,
768 hidden | 512 hidden
dims, 8 heads) dims, 6 atten-
tion heads)
LoRA Rank (r) | 16 8
LoRA  Alpha | 32 16
(@)
Target Modules | Q, V, K, O Q, V Aug-
mented
Dropout 0.1 0.1
Corpus Size 5000 examples | 10000  exam-
ples
Generation Beam Search | Conservative
Strategy (Width 6, LP | Beam search
0.8) and repe- | (LP 1.0, Rep-
tition penalty | etition P. 1.2,
(1.1) no-repeat-n-
gram size 3)
Augmentation Vowel drop- | Vowel sign
Focus ping, Char | dropping,
Duplication, Chillu  varia-
Punctuation, tion, Punctua-
Perturbation tion normaliza-
tion

5. Ensemble Selection: The system selects the
neural output.

6. Output: vaahanam odichchu (QU::0a0Mo
639SaJ3, “vehicle drove™).

3.3 Neural Component Design

Both systems use a pre-trained multilingual mT5
model, adapted using LoRA on aggressively aug-
mented data with carefully chosen base model ca-
pacities. Table 1 summarizes the configurations.
Base Model Selection Rationale: Tamil ex-
hibits highly complex agglutinative morphology
with extensive case marking (8 cases) and verb
conjugations requiring substantial model capac-
ity to capture morphological patterns. The larger
mT5-base (580M parameters, 12 layers) with
higher LoRA rank (16) provides sufficient rep-
resentational capacity for Tamil’s morphological
complexity without extreme overfitting, prioritiz-
ing correction coverage for diverse error patterns.
Conversely, Malayalam, while also agglutinative,
presents a higher risk of neural over-correction in
our constrained dataset due to observed generation
instability during preliminary experiments. The
smaller mT5-small (300M parameters, § layers)
with conservative LoRA rank (8) reduces overfit-



ting risk and generation volatility, prioritizing out-
put reliability and stability reinforced by stringent
ensemble safety gates. This differentiation reflects
empirical findings that Tamil benefits from capac-
ity while Malayalam requires conservative genera-
tion.

3.4 Data Augmentation

Data augmentation strategies were designed specif-
ically for each language to mitigate data scarcity
through controlled noise injection. For Tamil, aug-
mentation included vowel dropping targeting 12
Tamil vowels (a, aa, i, ii, u, uu, e, ee, o, 0o, ai,
au /S, &Y, @), FF, 2, 26T, 6, ¢, @, 62, W,
661T), character duplication and deletion, punctu-
ation perturbation, and word order shuffling, ex-
panding from 91 to 5,000 examples representing
a 55-fold increase. For Malayalam, augmentation
focused on vowel sign dropping targeting 12 signs
(-aa, -i, -ii, -u, -uu, -ri, -e, -ee, -ai, -0, -00, -au / ::9,
A, 2, 23, 2, 5, O, G, 06, ©:0, G, D),
safe character duplication and deletion avoiding
the first two characters to prevent catastrophic
truncation, adjacent word swapping excluding the
first word to maintain sentence structure, comma
spacing removal, punctuation normalization, and
chillu variation handling modern-traditional pairs
(n/n-virama, n/n-virama, I/l-virama, l/]-virama, 1/r-
virama, k/k-virama/ 0@/, end/em, @d/el, ud/s3,
@/®, ©8/%5). The Malayalam augmentation pro-
cess included similarity filtering, maintaining val-
ues between 0.6 and 0.98, and length preservation
checks requiring at least 50% of the original length,
expanding the corpus to 10,000 examples. Each
original sentence underwent one or two random
transformations, significantly enhancing model ro-
bustness while preventing spurious noise pattern
learning.

3.5 Training Configuration

Training configuration remained consistent across
both languages. Both systems employed AdamW
optimizer under FP16 precision with a learning
rate of 3e-4, effective batch size of 8, weight de-
cay of 0.01, and training for 10 epochs with early
stopping enabled to prevent overfitting. This con-
figuration balanced training efficiency with model
quality for extremely low-resource settings.

3.6 Rule-based and Ensemble Components

The symbolic component provides language-
specific error pattern handling with deterministic

high-precision corrections. The Tamil rule-based
system stores all 91 training input-output pairs as
exact sentence matches for perfect precision. It in-
corporates over 25 manually curated domain pat-
terns covering common orthographic errors such
as The symbolic component provides language-
specific error pattern handling with deterministic
high-precision corrections. The Tamil rule-based
system stores all 91 training input-output pairs as
exact sentence matches for perfect precision. It in-
corporates over 25 manually curated domain pat-
terns covering common:

* Orthographic errors such as vaakanam
—  vaahanam, kalluurari — kalluri
(6U:TEHETOTLD — 6UITEHEDTLD, S6VEY|TIf]

— &6VVITIf).

* Vowel lengthening errors: (thoon —
than, thookkam — tukkam / &:mmessr —
SIT600T, HITHSLD — HTSHEHLD).

* Consonant errors (iyandhithith —
iyanthira, saramangal — siramangal /

QuBH s — Qb T, FTLOBISET —
FTLOMmIG6IT).

* Common word corrections (haaran —
haarn, ventum — ventum / @)FI’IIGI')T —
aummyest, Geuest(Hlb — GeuesoT(HLD).

Additionally, the system maintains over 10 full
sentence templates for frequent multi-error pat-
terns and employs similarity matching using Se-
quenceMatcher with a 0.75 threshold for approx-
imate matches.

The Malayalam rule-based system stores all
training pairs as exact sentence matches for imme-
diate high-confidence corrections. It implements
automated phrase-level pattern learning where Se-
quenceMatcher identifies phrase replacements up
to 6 tokens from training data. Safe phrase re-
placement employs regex word-boundary match-
ing to prevent word fragmentation with validation
ensuring preservation of at least the minimum re-
quired tokens, avoiding unexpected first charac-
ter changes, preventing text from beginning with
punctuation, and limiting application to one re-
placement per sentence to avoid cascading errors.
The system also performs punctuation normaliza-
tion by removing trailing commas and quotes, nor-
malizing spacing, and collapsing whitespace.

The ensemble layer integrates neural and sym-
bolic outputs using differentiated strategies. The



Tamil ensemble employs a confidence-driven hier-
archical approach prioritizing exact matches from
sentence-level and training data matches, followed
by neural predictions refined through rule-based
post-processing, and finally rule-only fallbacks for
unseen cases. Post-processing cleans artifacts in-
cluding <extra_id> tokens and “correct:” pre-
fixes, normalizes whitespace, and applies punctua-
tion corrections.

The Malayalam ensemble employs a safety-first
parallel selection strategy. Exact matches are pri-
oritized with training data lookups providing per-
fect accuracy. Validated neural predictions must
pass all safety criteria, including character pres-
ence, >45% token overlap, >50% length ratio,
and <45% deletion ratio. Rule-based enhance-
ments are applied to valid neural outputs through
safe phrase replacement. Similarity-based selec-
tion chooses between neural and rule candidates
based on overlap with the original input. When
both approaches produce high-similarity outputs
exceeding 95% for rules or 88% for neural com-
parisons, the system conservatively prefers candi-
dates maintaining higher token overlap. Fallback
to the original input occurs when both candidates
fail safety checks or when neural generation pro-
duces empty or severely truncated outputs. The
ensemble strategy explicitly tracks usage statistics
including neural used, rule used, exact used, and
fallback used, providing transparency in the cor-
rection decision process.

4 Experiments and Results

4.1 Experimental Setup

The IndicGEC training sets contain sentence pairs
in CSV format with input and output sentence
columns. Test data was provided without gold stan-
dard outputs, simulating real-world deployment
where systems generate corrections independently.
This blind evaluation assesses ability to handle
diverse error patterns without reference targets.
Tamil dataset includes 91 training pairs augmented
to 5,000, with 16 validation pairs and 65 test inputs.
Malayalam dataset includes limited training pairs
augmented to 10,000, with validation set available
and 102 test inputs. GLEU served as the primary
evaluation metric balancing n-gram precision and
recall.

Three configurations were compared for both
languages:

1. Neural-only using mT5-base (for Tamil,

r=16) or mT5-small (for Malayalam, r=S8)
fine-tuned on augmented data

2. Rule-only employing multi-layer pattern
matching using exact sentences, domain
patterns, phrase-level corrections, and
similarity-based matching with threshold
0.75

3. The proposed hybrid ensemble combining
neural predictions with rule-based processing,
marker preservation for Tamil, and safety val-
idation for Malayalam.

Implementation used Hugging Face Transform-
ers v4.35, PEFT v0.7, and PyTorch. The Tamil
system was fine-tuned for 10 epochs on 5,000
augmented examples with 91 exact corrections,
over 25 manually curated patterns, and over 10
sentence templates, using regex-based marker ex-
traction and reattachment for formatting integrity.
The Malayalam system was fine-tuned for 10
epochs on 10,000 augmented examples with au-
tomated phrase-level pattern extraction via Se-
quenceMatcher and safety validation thresholds re-
quiring at least 1 Malayalam character, at least
45% token overlap, at least 50% length ratio, and
at most 45% deletion ratio, with ensemble similar-
ity thresholds of 95% for rule-based and 88% for
neural comparisons.

4.2 Results

On validation sets, Tamil achieved 80.47% GLEU
(16 examples) while Malayalam achieved 55.21%
GLEU.

On blind test sets, Tamil achieved 85.34%
GLEU (65 inputs securing overall Rank 8), while
Malayalam achieved 95.06% GLEU (102 inputs
securing impressive Rank 2). Both hybrid mod-
els significantly outperformed individual neural-
only and rule-only baselines, demonstrating the ef-
fectiveness of the neurosymbolic approach for ex-
tremely low-resource GEC.

4.3 Error Analysis

Error analysis on test sets revealed the systems’
capabilities across diverse error types. Represen-
tative examples are provided in Table 2 for both
Tamil and Malayalam.

The Tamil system demonstrated capability
handling morphological complexity, including
transformations like iyandhithith — iyanthira /



QubsHls — @ubSF, multi-token correc-

tions such as haaran — haarn / em::Ty6oT
— @M::TJ6sT and vaakanam — vaahanam /
6 MTE&HEBOTLD —  6U:T&EBTLD  simultaneously,
verb form corrections with subject-verb agreement,
vowel length normalization converting -uaa — -ii
/ s — <78, word order reordering while pre-
serving markers, handling multiple simultaneous
errors, and punctuation insertion.

The Malayalam system demonstrated spelling
corrections, conservative preservation when no
correction was needed, and token-level preser-
vation. Safety validation mechanisms success-
fully prevented catastrophic deletions and over-
corrections, maintaining input integrity when cor-
rections were uncertain.

4.4 Ablation Study: Model Capacity Analysis

To validate our language-specific model selection
and to address the impact of model capacity on per-
formance, we conducted ablation study by swap-
ping mT5 variants between languages. Specifi-
cally, we trained the Tamil GEC with mT5-small
(originally used mT5-base) and Malayalam GEC
with mT5-base (originally used mT5-small), main-
taining identical training configurations, augmen-
tation strategies, and ensemble mechanisms.

The ablation results strongly validate our dif-
ferentiated model selection strategy. For Tamil,
reducing model capacity from mT5-base to mT5-
small resulted in a 5.30 percentage point drop
in validation GLEU (from 80.47% to 75.17%),
demonstrating that Tamil’s complex agglutinative
morphology with extensive case marking and verb
conjugations genuinely requires the higher repre-
sentational capacity of mT5-base (580M param-
eters, 12 layers) to capture and correct diverse
morphological error patterns effectively. The
smaller model struggled with complex morpholog-
ical transformations, producing more errors in han-
dling multi-token corrections and verb form agree-
ments.

Conversely, for Malayalam, increasing model
capacity from mT5-small to mT5-base yielded
a marginal performance difference (55.21% vs.
55.03%, a negligible -0.18 delta), confirming that
the larger model provides no substantial benefit
for Malayalam GEC in our constrained data set-
ting. Critically, preliminary analysis revealed that
mT5-base for Malayalam exhibited increased gen-
eration instability, producing more instances re-
quiring safety validation rejection compared to

mT5-small. This behavior validates our conserva-
tive approach: mT5-small’s lower capacity, com-
bined with strict safety mechanisms (token overlap
>45%, length ratio >50%, deletion ratio <45%),
provides an optimal balance between correction ca-
pability and output reliability for Malayalam.

These findings demonstrate that our model se-
lection was empirically grounded rather than ar-
bitrary: Tamil benefits substantially from higher
model capacity to handle morphological complex-
ity, while Malayalam requires conservative capac-
ity with robust safety validation to prevent over-
correction in extremely low-resource settings. The
asymmetric capacity requirements reflect funda-
mental differences in how the two languages mani-
fest errors and respond to neural correction in data-
scarce scenarios.

5 Discussion

Extremely low resource GEC requires hybrid ap-
proaches with optimal balance between the neu-
ral and symbolic rule-based components depend-
ing on the language characteristics, dataset size,
and deployment priorities. The key advantage of
the hybrid architecture lies in its application of a se-
lective strategy with high-precision rules, handling
known patterns with perfect accuracy, neural gen-
eration providing fallback for unseen error types,
and post-processing refining neural outputs while
preventing common failures.

Tamil system success stemmed from mT5-base
providing sufficient capacity for complex Tamil
morphology without extreme overfitting, conser-
vative augmentation to 5,000 examples prevent-
ing noise pattern learning, manual pattern cura-
tion compensating for training data gaps, and hi-
erarchical correction strategy ensuring determinis-
tic handling of known patterns, achieving 85.34%
GLEU on test data. Malayalam system success re-
sulted from mT5-small with strict safety validation
preventing overfitting and output degeneration, ag-
gressive but filtered augmentation to 10,000 ex-
amples maintaining quality, multi-layered safety
framework ensuring output quality preservation,
and parallel processing with conservative fallback
prioritizing reliability, achieving 95.06% GLEU
and securing Rank 2.

While direct comparison remains limited due to
novel datasets, our results surpass reported low-
resource GEC performance. Czech GEC with
synthetic augmentation achieved approximately



Table 2: Error Analysis — Tamil and Malayalam

Input Sentence Hybrid Output Correction Type
Qszmfimarensy QuinhHsHlest QmflHsmeney  @uihHys- Morphological
F55LD Hletr F551D

thozhilsaalai iyandhithithin sattham /
”factory mashine’s noise”

thozhilsaalai iyanthirathin sattham /
”factory machine’s noise”

QubdHs — @uIbST (iyandhithith

— iyanthira)

CuUNEGHUTSHSH]  6UITEEBITLIS-
erfledt @ammiyssr

pokku varatthu vaakanangalin haaran /
“traffic vehikles’ hron”

Cuss (& 6urs5 5l 6LITES 60T IE1 55-
eifledT @ miyssT

pokku varatthu vaahanangalin haarn /
“traffic vehicles’ horn”

Multi-token Correction

haaran — haarn; 6uU:M&HESOTLD —
61::T&H60TLD (vaakanam — vaahanam)

Bog| &Ml umSlliuenL&lesr-
65T

namathu kaathu paathippadaikindrana
/ our ear gets affected” (plural verb)

Bl G| &g LTS &sLLHS M

namathu kaathu paathikkappadugi-
radu / “our ear gets affected” (singular
verb)

Verb Form + Subject-Verb Agreement

sHevay|miflenwiujLd

BrL&enerl LMHlujd
kalluurariyaiyum kalluurari naalkallaip
patriyum / ’colege and colege days about”

seuay|mifl

sevauTiflenwiu|d &e6vevTifl HITL-
semerLl LIMHlujd

kalluriyaiyum kalluri naalkallaip pa-
triyum / ”college and college days about”

Vowel Length Normalization

wonT — 78 uaa — -

@6OILICL(H&ES e Ggey G-
75560 LWesTU(HSSTLO6V Jj6u-
Hlwib GpLiug)|

olipperukkiyai iravu neraththil payan-
paduththaamal avasiyam iruppadhu /
”loudspeaker night time not using necessary

Ept)

1S

@60116ILI(H & Hlemwl @y
Crrs5Hl6v  LIw6esTLI(H 55TV
@\Lug| Sjeuflwib

olipperukkiyai iravu neraththil payan-
paduththaamal iruppadhu avasiyam /
”loudspeaker night time not using is neces-

2

sary

Word Order Reordering + Marker Pre-
served

amuaBOvIcd masim @:vlai-
SHud

samudraththil thallunna kazhivukal /
”ocean dumping wastes”

amumBOOIcd masim @:vla-
BHud

samudraththil thallunna kazhivukal /
”ocean dumping wastes”

Preserved (no correction needed)

QI::086Mo 639Sla)3
vaakanam odichchu / ”vehikle drove”

QI:9a0Mo 633Sla)3
vaahanam odichchu / ’vehicle drove”

Spelling correction
QU::0dH6Mo — QU::0aNMo/ vaakanam —»
vaahanam

Sseilad meilaileeemo &:306mo
kadalil malineekaranam karanam / ’sea
pollution reason”

&seilad meilamleeemo H206mo
kadalil malineekaranam karanam / ’sea
pollution reason”

Preserved with validation

wjml aeilme:eemomila) ©26e-
6Me6BrRUd
dhvani
karanannal /
sons”

malineekaranaththinu
“noise pollution’s rea-

wjml aeilme:eemomoila) ©,2e-
6MeBrUd
dhvani
karanannal /
sons”

malineekaranaththinu
“noise pollution’s rea-

Token-level preservation

60-70% accuracy with similar data constraints
(Naplava & Straka, 2019), while our hybrid ap-
proach achieved 85.34% GLEU for Tamil and
95.06% GLEU for Malayalam, demonstrating vi-
ability for extreme low-resource scenarios. Key
advantages include high-precision rules handling
known patterns with perfect accuracy, neural gen-
eration providing fallback for unseen error types,
post-processing refining neural outputs and pre-
venting common failures, and conservative safety
mechanisms ensuring real-world deployability.

6 Conclusion

We successfully presented a robust unified neu-
rosymbolic framework for Grammatical Error
Correction in extremely low-resource Indic lan-
guages, applying it to Tamil and Malayalam. By

strategically differentiating neural model capacity
and ensemble strategy, we optimized for unique
challenges of each language. These systems
prove that combining modern pre-trained models,
parameter-efficient fine-tuning, aggressive aug-
mentation, and linguistic rule engineering provides
a powerful practical approach for GEC when fac-
ing severe constraints on annotated data, serving
as a blueprint for developing GEC systems for low
or under-resourced Indic languages.

7 Limitations and Future Work

Limitations include small training and validation
datasets. This limits statistical confidence, pat-
tern coverage that cannot address all possible gram-
matical errors, especially rare or domain-specific
mistakes, risk of pattern memorization rather than



generalizable learning, and system assumptions re-
garding formatting conventions or safety thresh-
olds that may not cover all use cases.

Future directions should focus on larger evalu-
ation datasets enabling statistically reliable perfor-
mance assessment, cross-domain testing on differ-
ent text types, linguistic integration incorporating
explicit morphological and syntactic knowledge,
active learning to identify high-value training ex-
amples, cross-lingual transfer leveraging knowl-
edge between related Dravidian languages, auto-
mated pattern discovery reducing reliance on man-
ual curation, and adaptive mechanisms enabling
dynamic threshold adjustment.
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