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Abstract

Vedic Sanskrit, the oldest attested form of San-
skrit, employs a distinctive pitch-accent sys-
tem that marks one syllable per word. To the
best of our knowledge, this work presents the
first application of large language models to
the automatic restoration of accent marks in
transliterated Vedic Sanskrit texts. A compre-
hensive corpus was assembled by extracting
major Vedic works from the TITUS project and
constructing paired samples of unaccented in-
put and correctly accented references, yielding
more than 100,000 training examples. Three
generative LLMs were fine-tuned on this cor-
pus: a LoRA-adapted Llama 3.1 8B Instruct
model, OpenAl GPT-4.1 nano, and Google
Gemini 2.5 Flash. These models were trained
in a sequence-to-sequence fashion to insert ac-
cent marks at appropriate positions. Evalua-
tion on roughly 2,000 sentences using preci-
sion, recall, F1, character error rate, word error
rate, and ChrF1 metrics shows that fine-tuned
models substantially outperform their untuned
baselines. The LoRA-tuned Llama achieves
the highest F1, followed by Gemini 2.5 Flash
and GPT-4.1 nano. Error analysis reveals that
the models learn to infer accents from gram-
matical and phonological context. These re-
sults demonstrate that LLMs can capture com-
plex accentual patterns and recover lost infor-
mation, opening possibilities for potential im-
provements in sandhi splitting, morphological
analysis, syntactic parsing and machine trans-
lation in Vedic NLP pipelines.

1 Introduction

Vedic Sanskrit is the oldest attested form of San-
skrit and preserves the religious and philosophical
contexts of ancient India. Vedic Sanskrit texts are
distinguished by a pitch accent system that marks
one syllable per word as accented. The accent
marks are essential for linguistic and philological
analysis of the Vedas. Accurate accentuation can
signal morphological and syntactic information in

Vedic Sanskrit, which differs significantly from
Classical Sanskrit. However, some Vedic texts
lack accent notations, and restoring Vedic accent
marks has received little attention in natural lan-
guage processing to date. This is a challenging se-
quence prediction task: the accent of a word is not
always predictable from its surface form alone; it
often depends on the grammatical context.

In this work, we address the task of automatic
Vedic accent restoration using modern large lan-
guage models (LLMs). We fine-tune three state-
of-the-art models on a comprehensive Vedic cor-
pus: (1) a LoRA-adapted Llama 3.1 8B Instruct
model, (2) an OpenAl GPT-4.1 nano model, and
(3) a Google Gemini 2.5 Flash model via super-
vised fine-tuning (SFT). We avoid older sequence-
to-sequence-based or BERT-like models, focusing
instead on these generative LLMs which can di-
rectly produce accented text. Our contributions in-
clude:

* assembling a large accented Vedic corpus
from the TITUS project and constructing

pairs of accented and unaccented sentences;
1

* demonstrating efficient fine-tuning of open
and closed large language models on this task;
and

* evaluating the models’ performance on accent
restoration using standard precision, recall,
F1 metrics, CER, WER, and ChrF1.

We show that all models achieve high accuracy in
restoring Vedic accent marks.

Our results represent the first application of
large-scale language models to the Vedic accent
restoration problem. By accurately reconstructing

'TITUS (Thesaurus Indogermanischer Text- und Sprach-
materialien) provides digitized Indo-European texts.
https://titus.uni-frankfurt.de/indexe.htm?
/texte/texte2.htm.
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accentual patterns, the models effectively bridge
a gap in Sanskrit digitization efforts. This capa-
bility indicates that Vedic accent restoration task
could potentially support downstream tasks, such
as sandhi splitting, morphological analysis, syn-
tactic parsing, and machine translation, although
systematic empirical vertification is left for future
work.

2 Vedic Accent System

Vedic Sanskrit is the oldest attested variety of San-
skrit, and its distinctive accent system sets it apart
from later stages of the language. In Latin translit-
eration, accent marks are represented by the acute
and the grave accents.

The fundamental rule of Vedic accentuation is
that each word carries only one accent. There are,
however, several exceptions, including enclitics, fi-
nite verbs in main clauses, vocatives and other con-
ditions (Macdonell, 1910).

Nouns, adjectives, and verbs in Vedic Sanskrit
inflect according to their semantic roles. Some
paradigms exhibit a dynamic accent system in
which the accent position changes across inflected
forms. For example, the active present participle
of the verb as ‘to be’ shows a nominative singular
form s-dn, with the accent on the suffix, and a gen-
itive singular form s-at-ds, with the accent on the
ending.

The position of the accent is also crucial in de-
termining the meaning of compounds. Vedic San-
skrit has a rich system of compound formation,
including: two endocentric types, determinative
(Tatpurusa) and descriptive (Karmadharaya); an
exocentric, possessive type (Bahuvrihi); a copu-
lative type (Dvandva); an iterative type (Amred-
ita); prepositional governing compounds; syntac-
tic compounds; and complexive compounds (Goto,
2013). The position of the accent helps to distin-
guish compound types. Tatpurusa and Karmad-
haraya, which are endocentric compounds, typi-
cally bear the accent on the final member, whereas
Bahuvrihi, which is exocentric, has the accent on
the first member.

3 Related Works

This research explores the task of restoring Vedic
Sanskrit accent. Though accents are critical in
Vedic Sanskrit, the present work is the first to frame
their recovery as an NLP task. Related studies fall
into three broad areas: computational analyses of

Vedic accentuation, diacritic or accent restoration
in modern languages, and automatic restoration of
damaged ancient texts.

Computational modeling of Vedic accent:
Scholars have long noted that Vedic Sanskrit ac-
cent cannot be predicted by simple syllable count
or phonological weight. Sandell (2024) argues that
stress assignment relies on morphological struc-
ture and prosody rather than arbitrary lists of ac-
cented affixes. Instead of positing separate phono-
logical strata or “dominant” affixes, Sandell pro-
poses a uniform Optimality Theory analysis where
each morpheme enters the derivation with its own
foot structure; accent emerges from the interaction
of faithfulness to morphological heads and marked-
ness constraints. This approach achieves compu-
tational uniformity across stems and suffixes and
avoids listing stem-specific accent patterns. Such
theoretical work provides insights into how mor-
phological context might inform machine learning
models for accent restoration.

Accent and diacritic restoration in modern
languages:

Romance languages

Yarowsky (1994) treats diacritic restoration in
Spanish and French as a lexical ambiguity resolu-
tion problem. Omission of diacritics (e.g. acute or
grave accents) produces many homographs, caus-
ing lexical and syntactic ambiguity. Each unac-
cented surface form has a set of possible accented
lemmas, and the task is to choose the correct one
using context. The proposed statistical decision-
list algorithm selects the single most informative
contextual feature, rather than combining multiple
cues, to choose the correct accent. This simple
method achieves over 99% accuracy on both lan-
guages, demonstrating that moderate training data
and local context can resolve diacritic ambiguity
with high precision.

Arabic

Aldallal et al. (2025) build a compact decoder-
only Transformer model (SADEED) with about
140M parameters for Arabic diacritization. Mod-
ern Arabic is typically written without short vowel
marks (harakat), making diacritization necessary
for unambiguous parsing, text-to-speech and ma-
chine translation. The task is challenging be-
cause Arabic exhibits rich morphology, multiple
registers (Classical vs. Modern Standard Arabic),
and limited diacritized corpora. Trained on a
new benchmark corpus (SadeedDiac-25) combin-
ing modern and classical texts, their model deliv-



ers competitive accuracy while being much smaller
than prior systems. Their work highlights the im-
portance of specialized datasets and demonstrates
that carefully designed, lightweight models can
yield strong diacritization performance.

Vietnamese

Dang and Nguyen (2020) propose a hybrid
model combining a Transformer decoder with a
diacritic penalty layer for Vietnamese diacritic
restoration. Vietnamese uses tone marks and other
diacritics on most words, nearly 90% of words
contain diacritics, and over 80% of these have
multiple possible tonal reconstructions. Restora-
tion is therefore indispensable for downstream ap-
plications but challenging because sequence-to-
sequence neural models can generate invalid syl-
lables and are slow. In their method, the decoder
outputs one character at a time, while the penalty
layer restricts outputs to valid diacritic letters. This
reduces processing time by roughly eight to ten
times compared with beam search and preserves or
slightly improves F1-score relative to state-of-the-
art sequence-to-sequence models. Their approach
shows that explicit constraints on output vocabu-
lary can improve both efficiency and accuracy in
diacritic restoration.

Ancient text restoration:

Assael et al. (2019) introduce PYTHIA, the first
deep-learning system for restoring damaged an-
cient Greek inscriptions. Ancient inscriptions of-
ten survive only fragmentarily, requiring special-
ists to hypothesize missing text. After constructing
the PHI-ML corpus from the Packard Humanities
Institute’s Greek epigraphic collection, the authors
train a model that jointly leverages character-level
and word-level information to predict missing char-
acters. On this dataset, PYTHIA’s predictions re-
duce the character error rate to 30.1%, compared
with 57.3% for human epigraphists, and the correct
sequence appears within the top-20 hypotheses in
73.5% of cases.

4 Dataset

4.1 Corpus Compilation

We compiled a corpus of Vedic Sanskrit texts
from the TITUS digital text platform (Thesaurus
Indogermanischer Text- und Sprachmaterialien).
The dataset includes the major Samhita (hymn col-
lections) and Brahmana (prose commentary) texts
of the Vedic corpus, as well as Aranyaka and Up-
anisad sections. All the following texts are anno-

tated with the original accent marks. The corpus
comprises eight texts:

AVS Atharvaveda Samhita (Saunaka recen-
sion)
MS Maitrayani Sambhita (Black Yajurveda)

RV Rgveda Samhita (Rgveda hymns)

RVKh Rgveda Khilani (Rgveda appendix
hymns)
SBM  Satapatha Brahmana (Madhyandina re-

cension, a brahmana of VS)
TB Taittirtya Brahmana (a brahmana of TS)
TS Taittirtya Sanihita (Black Yajurveda)
VS Vajasaneyi Sanihita (White Yajurveda)

These texts span three Vedas (Rgveda, Athar-
vaveda and Yajurveda) and represent comprehen-
sive coverage of Vedic genres. Each text in our cor-
pus is provided in transliterated form with diacriti-
cal marks following the ISO 15919 standard, which
allows encoding Vedic accent as acute (") and grave
() marks on vowels. As accent marking prac-
tices in Devanagari differ substantially across lit-
eratures, we adopted the Latin transliteration with
diacritics to ensure consistency.

We obtained the texts in accented form from
TITUS, which has digitized scholarly editions of
these works (e.g., the Atharvaveda Saunaka edition
by Roth & Whitney 1856, etc., as curated in TI-
TUS). We then removed all accent notation from
the corpus to create training inputs, with the origi-
nal accented versions serving as reference outputs.

The dataset was split into training, validation,
and test sets in an 8:1:1 ratio by random partition-
ing at the verse or sentence level that has two or
more words, ensuring that there is no overlap of
exact verses across sets.

4.2 Dataset Statistics

The whole dataset consists of 108,076 text sam-
ples. Each sample is relatively short, with an av-
erage length of about six words (mean = 6.03, stan-
dard deviation = 5.72). Most texts contain between
three and seven words, while the longest example
reaches 148 words. The distribution of text lengths
for the training, validation, and test sets is visual-
ized in box plots (see Figure 1), illustrating that
the overall length distribution remains consistent
across subsets.

In terms of vocabulary, the dataset contains
a total of 651,337 space-delimited “words” and
133,873 unique “word forms”. However, because
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Figure 1: Box plots showing the distribution of text
lengths (in words) across training, validation, and test
sets.

sound changes called sandhi can combine multiple
underlying word forms into a single surface form,
the true number of lexical words is likely higher
than these counts suggest. The lexical density, de-
fined as the ratio of unique words to total tokens, is
0.2055, which indicates a moderate level of lexical
diversity. On average, each text contains approxi-
mately six words.

Accent annotations were also analyzed. The av-
erage number of accents per text is 5.53 (standard
deviation = 6.18), with values ranging from 0 to
154. The median is four accents per text, suggest-
ing that most utterances include a small number of
accented segments. Figure 1 shows the distribution
of accent counts across the dataset.

Overall, these statistics demonstrate that the cor-
pus is composed primarily of short, lexically varied
utterances, with accent patterns distributed broadly
but skewed toward lower counts.

Our dataset 1is publicly available at:
https://huggingface.co/datasets/yzk/
vedic-accent-restoration-dataset.

S Models and Fine-Tuning

We fine-tuned two proprietary large language mod-
els and two open-weight models on the accent
restoration task.

The first model is a Llama 3.1 8B Instruct
model (Grattafiori et al., 2024), an eight-billion-
parameter instruction-tuned language model from
the Llama series (Meta Al). We applied LoRA
(Low-Rank Adaptation) (Hu et al., 2022) to fine-
tune this model efficiently. We set the LoRA rank
to 16 and fine-tuned only the query and value pro-
jection matrices of each transformer layer, with all
other weights kept fixed. The training objective
was a straightforward sequence-to-sequence gener-
ation: the model takes an unaccented Vedic text

sequence as input and is trained to output the same
sequence with correct accent marks inserted in the
appropriate positions. We fine-tuned for 10 epochs
(approximately 50k update steps) with a learning
rate of 2e-4, using the AdamW optimizer. The
model converged quickly, likely due to the simplic-
ity of the output (accent markers) relative to the
rich pretraining of the Llama model.

The second model is OpenAl GPT-4.1
nano (OpenAl, 2025), a proprietary LLM accessi-
ble via API. This model is an instruction-following
variant of GPT-4 with a smaller parameter scale.
We performed supervised fine-tuning (SFT) on
GPT-4.1 nano by supplying our training pairs
through the OpenAl fine-tuning API. The model
was fine-tuned in a similar sequence-to-sequence
fashion: each training example was presented
as a prompt consisting of an unaccented Vedic
sentence, with the expected accented sentence as
the completion. We fine-tuned GPT-4.1 nano for
one epoch over the training data (the maximum
allowed by OpenAl’s guidelines for this model).
Despite the model’s smaller size compared with
full GPT-4, it benefits from GPT-4’s advanced
initialization and instruction tuning. We antic-
ipated that GPT-4.1 nano might capture accent
patterns from context even without seeing as many
examples, due to its strong zero-shot capabilities.

The third proprietary model is Google Gem-
ini 2.5 Flash (LLC, 2025), a fast and instruction-
optimized variant of the Gemini series. We fine-
tuned this model using the Gemini API, following
Google’s official fine-tuning guidelines. To align
with these recommendations, we limited the train-
ing dataset size by randomly sampling 2,000 sen-
tence pairs from our full dataset. The fine-tuning
procedure followed the same supervised sequence-
to-sequence format as with GPT-4.1 nano: the
input was an unaccented sentence and the out-
put the correctly accented version. Although the
smaller training size constrained exposure, the
model adapted efficiently and demonstrated strong
contextual generalization, suggesting that Gem-
ini’s robust instruction tuning and multilingual pre-
training provide useful inductive bias for accent
restoration tasks.

6 Evaluation Setup

We evaluate the models on the held-out test set of
Vedic sentences/verses with gold-standard accent
markings. The primary evaluation metrics are Pre-
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cision, Recall, and F1-score for accent restoration,
computed at the character level on vowels. An ac-
cent prediction is considered correct if the model
outputs the correct diacritic (e.g., an acute accent)
on the exact vowel that is accented in the reference.
Precision thus reflects the fraction of accent marks
inserted by the model that are correct, while Re-
call reflects the fraction of actual reference accent
marks that the model successfully restored. F1 is
the harmonic mean of Precision and Recall, sum-
marizing overall accuracy of accent placement.

In addition to character-level metrics, we
also examine CER (character error rate), WER
(word error rate), and ChrF1 (character-level F1
score) (Popovié, 2015), to provide a more holistic
view of model performance.

The evaluation was performed separately for
each model. We used the same test set for all mod-
els, containing around 2,000 lines covering all in-
cluded texts. This ensures a fair comparison under
identical conditions. No post-processing was ap-
plied to the model outputs; we compare raw model
output to the reference after normalizing Unicode
combining characters for fairness.

7 Results

7.1 Overall Performance

All fine-tuned models substantially outperform
their pre-trained baselines across all metrics. The
Llama 3.1 8B model after supervised fine-tuning
achieves the best overall performance, with a pre-
cision of 0.916, recall of 0.841 and Fl-score of
0.877. Its word error rate (WER) is the lowest
among the tested models, and it achieves the high-
est ChrF1 score (87.5). Although its character er-
ror rate (CER) is not the absolute minimum, it re-
mains competitive.

GPT-4.1 nano and Gemini 2.5 models also show
strong gains after fine-tuning, indicating that SFT
effectively adapts each base model to the specific
linguistic task of accent restoration. In particular,
GPT-4.1 nano’s CER of 0.062 suggests it produces
fewer local character-level errors, while Gemini
2.5 Flash maintains balanced precision and recall,
leading to a stable F1 of 0.780. These proprietary
models already achieve strong performance even
before SFT.

7.2 Error Analysis

A common error type observed across models is
over-generation of accents (false positives), where

an accent mark is added to an unaccented syllable.
Such cases often occur adjacent to the correct po-
sition. Missed accents (false negatives) are typi-
cally found in long compounds or phrases. These
patterns suggest that local contextual cues play a
central role in the models’ predictions.

Overall, these results demonstrate that fine-
tuned large language models are capable of restor-
ing complex Vedic accent patterns with high ac-
curacy, capturing both surface orthographic and
deeper phonological regularities. The open-weight
LoRA-tuned Llama 3.1 8B model achieves per-
formance comparable to the proprietary GPT-4.1
nano model while requiring significantly less com-
putational cost, making it an attractive option for
deployment in Sanskrit text processing pipelines.

7.3 Improvement Rates by Text Type

To examine whether fine-tuning effects differ
across textual genres, we computed improvement
rates for each corpus, Rgveda (RV), Yajurveda
(YV), and Atharvaveda (AV), based on the im-
provement from pre-trained to fine-tuned models.

Table 2 summarizes the relative improvements
for core metrics.

Overall, the improvement trends are broadly
consistent across the three Vedic corpora. All show
large reductions in character and word error rates
(ranging from roughly 50% to 130% decreases),
and substantial increases in precision and overall
Fl-scores. Although the exact magnitudes vary
slightly with the largest CER reduction observed
in the RV and the strongest gain in ChrF1 in the
AV, the general pattern suggests that fine-tuning
improves performance in a relatively uniform way
across different Vedic text types.

The modest differences (within about 10-15%
across corpora) imply that the model’s learning is
not strongly biased toward a specific Vedic text.
This indicates that the fine-tuned model captures
accentual patterns that generalize well across tex-
tual traditions, rather than overfitting to any single
recension or genre.

7.4 Improvement Rates by Text Category

We also compared improvement rates between the
Sanihita and non-Sanihita (Brahmana, Aranyaka,
Upanisad) groups to investigate whether the prose
or metrical style of the text affects restoration accu-
racy. For simplicity, the Black Yajurveda, which
traditionally contains both Samhita and Brahmana
portions, was counted as part of the Samhita group.



Model Precision? Recallf F117 CER| WER| ChrF17
GPT-4.1 nano (Before SFT) 0.609 0.020 0.039 0.288  0.858 45.6
GPT-4.1 nano (After SFT) 0.752 0.676  0.712 0.062 0.322 79.6
Gemini 2.5 Flash(Before SFT) 0.551 0.191 0.284 0.698 0.863 22.6
Gemini 2.5 Flash (After SFT) 0.789 0.771  0.780 0.109  0.249 83.5
Llama 3.1 8B (Before SFT) 0.452 0.034 0.064 0.249 0.894 48.1
Llama 3.1 8B (After SFT) 0.916 0.841 0.877 0.096 0.161 87.5

Table 1: Evaluation results on Vedic accent restoration. Bold values indicate the best performance for each metric.

Metric RV YV AV

CER (%) 131.66 75.78 80.56
WER (%) 74.78 61.16 52.58
ChrF1 (%) 60.61 59.17 67.81
Precision (%) 54.40 63.80 53.08
Recall (%) 32.00 11.10 19.01
F1 (%) 20.41  26.25 34.64

Table 2: Relative improvement rates by text type.

Similarly, Brahmana texts often include direct quo-
tations from the Sanihita, but these were not sepa-
rated out and were counted within the Brahmana
group.

Metric Samhita Non-Sanihita
CER (%) 84.72 79.35
WER (%) 62.13 58.20
ChrF1 (%) 63.41 60.02
Precision (%) 57.92 54.10
Recall (%) 8.43 5.26
F1 (%) 28.46 26.89

Table 3: Improvement rates by text category.

As shown in Table 3, the improvement rates for
both groups are comparable across all metrics. The
Sanmihita group shows slightly higher reductions in
character and word error rates (around 80-85%),
but the differences from the Brahmana group re-
main within a narrow range of 3-5%. This sug-
gests that fine-tuning improved model performance
in a balanced manner, regardless of textual genre or
prosodic complexity.

The result further indicates that the model gen-
eralizes well across metrical and prose texts alike,
capturing accent patterns that apply uniformly to
both verse and explanatory prose. Given the mixed
nature of Vedic textual traditions and the pres-

ence of quotations across sections, such genre-
independent gains are a desirable property for ro-
bust automatic accent restoration.

8 Conclusion

We presented a study on restoring Vedic Sanskrit
accent marks with fine-tuned large language mod-
els, achieving 87.7% F1 on inserting correct accen-
tual markings into unaccented texts. Beyond sur-
face accuracy, this performance suggests that the
model has internalized core regularities of Vedic
phonology and morphosyntax, learning not just
where accents occur, but also why they occur, as
accent placement in Vedic reflects clause structure,
lexical accent and sandhi outcomes.

This capability opens concrete avenues for
downstream Vedic NLP. Accented input can
sharpen sandhi splitting and morphological dis-
ambiguation and provide informative signals for
syntactic parsing and machine translation. In
the broader Sanskrit pipeline, accent restoration
can serve as a front-end normalization step that
improves robustness in (i) post-OCR correction
(Nehrdich et al., 2024; Maheshwari et al., 2022),
(i) Vedic OCR workflows (Tsukagoshi et al.,
2025), (iii) compound type identification (Krish-
nan et al., 2025), and (iv) Sanskrit translation sys-
tems (Pandey et al., 2022; Punia et al., 2020).
In each case, accent cues provide linguistically
grounded features that downstream models can ex-
ploit.

Future work will scale to larger base models and
explore multitask and pipeline training, e.g., joint
learning with parsing or translation, or end-to-end
systems that perform OCR, accent restoration and
then analysis. We also plan to test portability to
other historical languages that use diacritical sys-
tems. Ultimately, restoring Vedic accents is not an
orthographic nicety; it is a means to recover latent



linguistic information and to enhance the fidelity
of subsequent language processing tasks.

Limitations

Our study focuses exclusively on the task of Vedic
accent restoratioin, and we do not empirically
evaluate the impact of the task on downstream
NLP tasks such as sandhi splitting, morphologi-
cal analysis, syntactic parsing, or machine transla-
tion. While linguistic theory suggests that explicit
phonoclogical marking may be beneficial, confirm-
ing these effects requires further systematic evalu-
ation.

In addition, our experiments rely on a limited set
of textual source, which do not fully represent the
diversity of Vedic textual traditions, recensions, or
orthographic conventions.

Another limitation concerns the evaluation of ac-
cent placement in compound nouns. In Vedic San-
skrit, compounds represent a challenging case for
accent restoration (section 2). Ideally, we should
evaluate the models on such minimal pairs. How-
ever, our current test set does not contain repre-
sentative examples of these compounds, in part
because we did not manually curate this subset
when constructing the splits. A future version of
the dataset should incorporate a balanced selection
of accentually contrastive compounds, enabling a
more systematic evaluation of model performance
on accent-based semantic and morphological dis-
tinctions.
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A Training Details

A.1 Training Configurations

The training configurations used for the Llama 3.1
8B Instruct, GPT-4.1 nano, and Gemini 2.5 Flash
models are summarized below.

Llama 3.1 8B Instruct
* LoRA rank: 16
* LoRA alpha: 16
* LoRA dropout: 0.0
* Learning rate: 3e-4
* Learning rate scheduler: linear
* Warmup steps: 10

* Weight decay: 0.01

* Epochs: 10
* Batch size: 4
* Gradient accumulation steps: 8
* Optimizer: AdamW
GPT-4.1 nano
* Epochs: 1 (default)
* Batch size: 32
* Learning rate multiplier: 0.1
Gemini 2.5 Flash
* Epochs: 22 (automatically determined)
* Adapter size: 4 (default)

A.2 Training Data Format

For all models, the training data was formatted
as pairs of input-output sequences. The input
sequence consisted of the unaccented Vedic text,
while the output sequence contained the same text
with correct accent marks inserted.

Please restore the Vedic accents in the
following Vedic Sanskrit text.

### Input:
{input_text}

### Target:
{output_text}

Dataset contains the source, target and text_id
pairs in JSONL format as follows:

{

"text_id": "YVB_MS_2_3_4_ai",

"source": "tenayusayusman edhi",

"target": "ténayusayusman edhi"
}
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