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Abstract

Estimating the difficulty of multiple-choice
questions (MCQs) is central to adaptive testing
and learner modeling. We introduce INDRA
(Iterative Difficulty Refinement Attention), a
novel attention mechanism that unifies psycho-
metric priors with neural refinement for Indic
MCQ difficulty estimation. INDRA incorpo-
rates three key innovations: (i) IRT-informed
initialization, which assigns token-level dis-
crimination and difficulty scores to embed
psychometric interpretability; (ii) entropy-
driven iterative refinement, which progres-
sively sharpens attention to mimic the human
process of distractor elimination; and (iii) /n-
dic Aware Graph Coupling, which propagates
plausibility across morphologically and seman-
tically related tokens, a critical feature for In-
dic languages. Experiments on TEEMIL-H and
TEEMIL-K datasets show that INDRA achieves
consistent improvements, with absolute gains
of up to +1.02 F1 and +1.68 F1 over state-of-
the-art, while demonstrating through ablation
studies that psychometric priors, entropy re-
finement, and graph coupling contribute com-
plementary gains to accuracy and robustness.

1 Introduction

Multiple-choice questions (MCQs) remain one of
the most widely used formats for evaluating knowl-
edge in educational and standardized testing. The
difficulty of an MCQ plays a central role in assess-
ment design, adaptive testing, and learner model-
ing. Automatically estimating question difficulty
has thus emerged as a key challenge in educational
NLP, with growing interest from both psychomet-
ric and machine learning communities (Benedetto
et al., 2025).

Existing approaches fall into two broad cate-
gories. Psychometric models, such as Item Re-
sponse Theory (IRT), offer interpretability by as-
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sociating each item with difficulty and discrimi-
nation parameters (Chen et al., 2021; Lalor et al.,
2016). However, they require large-scale response
data and ignore the linguistic structure of questions
and distractors. Neural approaches, particularly
transformer-based models, directly model text but
rely on uniform self-attention mechanisms (Hahn,
2020). Recent work has proposed specialized re-
finements: CASSA (Ravikiran et al., 2025a) adds
task-aware biases to emphasize question relevance,
while GISA (Ravikiran et al., 2025b) introduces it-
erative refinement through entropy minimization
and masking. While these models improve per-
formance, they remain limited in two respects: (i)
they lack explicit psychometric grounding, and (ii)
they are not designed for morphologically rich lan-
guages. This limitation is especially pronounced
in Indic settings, where distractors are often mor-
phologically or semantically close to the correct
answer. For example, in a Hindi MCQ on state
politics:

AT TIHR & et Gea dr e am g?  (“What
is the name of the lower house of the state leg-
islature?”), the options-[aema T, faema uRwe,
q9g, rUTfeTeRT (Vidhan Sabha, Vidhan Parishad,
Sansad, Nyayapalika [Judiciary])-are institution-
ally related and differ only in suffixes or scope,
making them highly confusable even for proficient
learners. A similar challenge arises in Kannada,
where a question on parliamentary roles:

BReTRL AEFO® 9538 B0D 23392390 OI?

(“What is the main responsibility of the Lok
Sabha Speaker?”), offers options—ATI® LT -
8 B2 BN FTIONEATEDH DWBIDRRORNT,
mmﬁmfsgl DHOBART), FLRINTTY, SBR>-
DT, 735@2—‘65@1 Z,8ADRRW (Presiding over
the house to ensure smooth functioning, Introduc-
ing bills; Conducting sessions; Representing the
government)-that are all grammatically correct and
contextually plausible, yet only the first captures



the Speaker’s true responsibility. Such cases illus-
trate why Indic languages form a demanding stress
test for attention mechanisms: models must simul-
taneously contend with surface similarity, morpho-
logical variation, and semantically close distrac-
tors, all of which need to be explicitly modeled
for reliable difficulty estimation (Ravikiran et al.,
2025¢).

As such, we introduce INDRA, a principled at-
tention refinement mechanism for MCQ difficulty
estimation. INDRA integrates four key compo-
nents: (i) psychometric initialization, where to-
ken interactions are scaled by discrimination and
difficulty parameters, embedding IRT-style priors
at the token level; (ii) entropy-driven iterative re-
finement, which progressively sharpens attention
distributions to mimic human distractor elimina-
tion; (iii) /ndic-aware graph coupling, which prop-
agates plausibility across morphologically, seman-
tically, or syntactically related tokens; and (iv)
proximal stability, which guarantees smooth con-
vergence of refinement dynamics. Experiments
in Section 4.2, INDRA consistently outperforms
strong baselines across multiple datasets, achiev-
ing gains of in F1 and correlation with human dif-
ficulty labels. In summary, our contributions are
as follows:

* We propose INDRA, a general attention re-
finement framework that unifies psychomet-
ric priors, entropy-driven iterative refinement,
graph-based coupling, and stability control.

* We design token-level graphs that integrate
morphological, semantic, and syntactic sim-
ilarity, enabling adaptation to linguistically
rich and low-resource settings such as Indic
languages.

* Through extensive experiments on TEEMIL-H
and TEEMIL-K MCQ datasets, we show that
INDRA consistently improves predictive per-
formance and interpretability over prior meth-
ods.

2 Related Work

MCQ Difficulty Estimation: Estimating the diffi-
culty of multiple-choice questions (MCQs) is cen-
tral to adaptive learning, automated assessments,
and educational analytics. Traditional psychome-
tric models such as Item Response Theory (IRT)
(Al-zboon et al., 2021; Chen et al., 2021; Lalor
et al., 2016) infer item difficulty using large-scale

student response data, but rely on strong paramet-
ric assumptions and are difficult to extend across
domains and languages. Neural approaches, es-
pecially transformer-based models such as BERT
(Devlin et al., 2019), leverage contextual embed-
dings to predict difficulty labels directly. With
datasets such as Ext-MCQ (Manikandan et al.,
2025), and TEEMIL (Ravikiran et al., 2025¢), these
methods have shown promising improvements
by capturing semantic relationships across stems,
options, and distractors. However, most exist-
ing methods rely on general-purpose embeddings
(Loukina et al., 2016; Veeramani et al., 2024) and
single-pass attention mechanisms, which are not
sufficient to capture the fine-grained dependencies
between question elements and distractors (Venk-
tesh et al., 2022). This has motivated attention re-
finements tailored for MCQ difficulty estimation.

Attention Mechanisms and Refinements:
Self-attention underpins modern transformers,
yet vanilla dot-product attention treats all token
interactions uniformly, attenuating fine-grained
cues needed to reason over stems, keys, and
near-miss distractors. Positional and dependency-
aware refinements improve granularity e.g.,
relative positions (Shaw et al., 2018), disentan-
gled content/position attention in DeBERTa (He
et al., 2021), and rotary position embeddings (Su
et al.,, 2021) but these do not explicitly model
the stepwise elimination dynamics required for
predicting item difficulty. In MCQ difficulty esti-
mation specifically, recent work ranks or predicts
difficulty from item text and options (Bulut et al.,
2024) and revisits psychometric underpinnings via
IRT for NLP (Lalor et al., 2016; Zhou et al., 2025).
Analyses of how transformers answer MCQs
further suggest multi-stage internal procedures
that standard attention does not expose (Wang
et al., 2024). However, these approaches rarely
fuse psychometric priors with iterative attention
refinement, and are not tailored to morpholog-
ically rich settings where distractors differ by
suffixation or compounding; recent Indic datasets
highlight this gap and its impact on difficulty
estimation (Ravikiran et al., 2025c¢). These factors
motivate our proposed INDRA, which unifies
psychometric initialization with entropy-driven
iterative refinement and Indic-aware linguistic
coupling.



3 Methodology

INDRA addresses the limitations of standard self-
attention through four modules: (i) psychomet-
ric initialization, (i1) entropy-driven iterative re-
finement, (iil) Indic-aware graph coupling, and
(iv) proximal stability for convergence. Together,
these components transform INDRA into a princi-
pled replacement for standard attention, explicitly
aligning token interactions with psychometric pri-
ors, refinement dynamics, and linguistic structure.

3.1 Psychometric Initialization

Classical Item Response Theory (IRT) models the
probability that a learner with ability § answers an
item correctly using two parameters: difficulty b
(how hard the item is) and discrimination a (how
well the item separates strong learners from weak
ones):

P(correct | 6) = o(a(f —b)).

We adapt this idea from items to tokens. Each
token z;; (token j in option ¢) is assigned a discrim-
ination a;; and a difficulty b;;. Instead of starting
from uniform dot-product attention, we bias the ini-
tial attention logits as

0 aik]
Egj) = aij-Té — bz‘j-

Intuitively, tokens that are more informative (high
a;;) are weighted up, while tokens that make the
item harder (high b;;) are weighted down. By ag-
gregating across tokens, we can recover the famil-
iar item-level IRT parameters, linking INDRA di-
rectly to psychometric theory while staying com-
patible with transformer attention. Unlike standard
random initialization, INDRA seeds a;; and b;;
from dataset-informed priors (see Algorithm 1).

Discrimination a;; is scaled by token salience:
tokens unique to one option receive higher values,
while tokens shared across distractors are down-
weighted. Morphological uniqueness, measured
via normalized edit distance, further boosts the
weight of distinctive tokens. Difficulty b;; is ini-
tialized from human-annotated TEEMIL difficulty
labels: easy items map to lower values, hard items
to higher values, and medium items interpolate
between the two. This design ensures that the
starting logits ¢(0) already encode a plausible dif-
ficulty structure, improving stability of the refine-
ment loop and providing interpretable links be-
tween token-level attention and educational con-
structs.

Algorithm 1: Psychometric Initialization
in INDRA
1 [11 MCQ options O = {oy,...,0n} with
tokens x;;, item-level difficulty label
y € {Easy, Medium, Hard} Token-level
discrimination {a;; } and difficulty {b;;}
2 Initialize Qi 1.0, bz‘j < 0.0 for all
tokens for each option o; do

3 each token z;; in o; Compute
morphological uniqueness:

EditDiSt(l’ij, Ok)

wlx::) =1 —
(1]) ‘xlj‘

min
0L #0;

Compute option overlap score:

f(@ij) = !

~ count(z;; across all options)
Set discrimination prior (with a € [0, 1)):
aij = o u(wij) + (1= a) - f(zij)

Assign difficulty prior b;; from label y:

0.0, y = Easy
bij < 4 0.5, y=Medium V token in item
1.0, y = Hard

Normalize {a;;} to mean 1.0 and {b;;} to
mean 0.0 return {a;;}, {b;;}

3.2 Entropy-Driven Iterative Refinement

Human test-takers rarely identify the correct op-
tion in a single glance (Leighton and Gierl, 2017).
Instead, they progressively narrow down the pos-
sibilities by ruling out distractors. To mimic this
behavior, INDRA refines attention over multiple
steps rather than collapsing into a single pass. At
refinement step ¢, the distribution is

= SOftmax(%é(t—l)),

where 7 > 0 is a temperature parameter. A large
7 produces a broad, uncertain distribution (anal-
ogous to considering all options), while a small
7 yields a sharper focus (analogous to eliminat-
ing unlikely distractors). By iterating this update
for a small number of steps, irrelevant tokens are
suppressed gradually instead of being discarded
too early. This produces smoother and more in-
terpretable attention trajectories that better mirror



the incremental reasoning strategies observed in
human test-taking.

3.3 Indic-Aware Graph Coupling

In Indic languages, distractors often differ from the
correct answer through systematic variations such
as inflectional endings, compounding, derivational
morphology, synonymy, or code-mixing. These
patterns make distractors highly confusable: sur-
face similarity is high, yet subtle semantic dif-
ferences determine correctness. For instance, in
Hindi:

1930 & T # fofeer TR g1 WRd WHR |
R & TTE I HTAH 41?2 (“In the 1930s, what
was the name of the British Government s attempt
to reform the Government of India?”’) Options:
R TLHR FUR AT All share the prefix HRA
THR and differ only in suffixes such as f&faw
vs. gUR I, making them morphologically
and semantically close. Similarly, in Kannada:

%R0BTE), BNETT B GVTEFEA T30
To0Ed D?  (“What is the main reason for low
worker productivity in India?”’) Options: 30-
38 3R33, RoPES B3T3, mo:b%%d BRT-
8 Each option shares the suffix 3038 (“lack of”),
forming systematic morphological variants.

Such cases highlight that standard attention,
which treats tokens independently, cannot reliably
eliminate distractors without modeling these struc-
tural relations. Graph coupling addresses this by
ensuring plausibility is initially shared among re-
lated variants and only suppressed when sufficient
contextual evidence emerges.

Algorithm 2 outlines the construction of &
for each MCQ, integrating morphological, se-
mantic, and syntactic kernels into a sparse, row-
normalized diffusion matrix. For each MCQ, we
build a token similarity graph G € R™" that inte-
grates three signals:

Gij = Amorph exP( - 7ED(:,:$J'))

+ Asem c0s(h, hj)
+ Asyn1{ (4, j) € DepTree}, (1)

where ED is normalized edit distance (morphol-
ogy), cos(h;, hj) is semantic similarity between
contextual embeddings, and 1 encodes syntac-
tic adjacency. The weighted graph G is row-
normalized to produce G, with top-k sparsification
applied per row for scalability. At refinement step

Algorithm 2: Construction of Token Simi-
larity Graph G
Input: Tokens x1., with hidden states hy.,,;
tokenizer 7'; dependency edges
DepTree; weights Amorph, Asems Asyns
scale o,,, > 0, sparsity k
Output: Row-normalized graph
é e Rnxn

1 fori =1tondo

2 for j =1tondo
3 G;r]‘."rph —
exp(—ED(T (), T (x;))/om)
4 G™ < cos(hy, hyj)
5 G5 < 1if (i, 5) € DepTree else 0
6 Keep only top-k neighbors in row ¢

7 G )\morthmorph + AsemG* ™ + Agyn G
s Row-normalize rows: G;. < G;. / Ej Gij

9 return GG

t, attention propagates through the graph as

W=a+p&p",  pz0, @
where 5 controls propagation strength. Small £
keeps updates localized, while larger 3 diffuses
plausibility across morphologically and semanti-
cally related tokens. This coupling stabilizes re-
finement and prevents premature collapse onto a
single option when distractors are nearly indistin-
guishable.

3.4 Proximal Stability for Convergence

Repeated refinement and diffusion can destabilize
logits, especially when entropy is low or graph cou-
pling is strong. To guarantee smooth convergence,
INDRA applies proximal damping:

M=

— Y W e (0,1).

3)

This exponential moving average blends past and
current logits, preventing oscillations and ensuring
a monotonic narrowing of focus. The damping fac-
tor -y is tuned on the validation set.

3.5 Unified Update Rule

Combining psychometric initialization, iterative
refinement, graph coupling, and proximal stability,



the overall update at step ¢ is:
(0 = (1 —7)et=Y @)
AW (I + BG) softmax(y(t*l)). 5)
with initialization

) qz‘ij

© _
ew = a” W

After T refinement steps, the final attention distri-
bution is
pNDRA — softmax(%K(T)> .

Although INDRA introduces several compo-
nents psychometric initialization, iterative refine-
ment, graph coupling, and proximal stability they
operate within a single unified update rule. In prac-
tice, this means INDRA simply replaces the atten-
tion update inside a transformer layer, with each
step adding lightweight biasing or diffusion opera-
tions (See Appendix section D).

4 Experiments

In this section, we detail the experimental setup
including different models, experimental configu-
rations with INDRA, and present the results ob-
tained for multiple benchmark datasets. Besides,
ablation study on various hyperparameters is also
presented.

4.1 Task Formulation, Models, and Datasets

We frame MCQ difficulty estimation as a mul-
ticlass classification problem, following prior
work in transformer-based educational NLP
(Ravikiran et al., 2025a,b). Each instance consists
of a passage P (optional), a question (), and
four options. The input sequence is linearized
as: [CLS] Passage [SEP] Question [SEP]
Option A [SEP] Option B [SEP] Option C
[SEP] Option D, then tokenized and encoded
using a transformer encoder. A classification
head predicts a probability distribution over three
difficulty levels: Easy, Medium, and Hard, with
the predicted label taken as the most probable
class. To assess INDRA’s contribution, we also
conduct ablations where each module is removed
in turn.

Experiments are conducted on two curriculum-
grounded Indic datasets from the TEEMIL bench-
mark: TEEMIL-H (Hindi) and TEEMIL-K (Kan-
nada). Both datasets are manually annotated

into three difficulty classes (Easy, Medium, Hard)
by expert teachers. = We adopt an 80/10/10
train/validation/test split for both datasets to ensure
fair and comparable evaluation. Further prepro-
cessing and dataset statistics are described in Ap-
pendix F.

We report macro-averaged F1 across the three
difficulty levels as our primary metric, since it bal-
ances class imbalance and penalizes poor perfor-
mance on harder items. Accuracy is reported as a
secondary metric. Beyond prediction scores, we
also inspect the learned token-level psychometric
values (a;j, b;;), which provide interpretability by
showing how discrimination and difficulty signals
align with distractors.

4.2 Results

Table 1 reports benchmark and ablation results on
TEEMIL-H and TEEMIL-K. Prior to INDRA, the
best-performing system was GISA (mBERT), with
macro-F1 scores of 0.961 on Hindi and 0.912 on
Kannada. INDRA sets a new state of the art, reach-
ing 0.984 on Hindi and 0.950 on Kannada absolute
improvements of +2.23 and +3.76 F1 points over
the previous SoTA, and +1.02 and +1.68 points
over CASSA. All models, including INDRA, use
the same mBERT backbone to ensure fairness
and direct comparability, making clear that the
observed gains stem from INDRA’s refinement
mechanism rather than differences in pretrained en-
coders. While we focus on mBERT for compara-
bility, INDRA is architecture-agnostic and can be
applied to stronger models in future work. All re-
ported INDRA results use three refinement itera-
tions (7" = 3). As shown in Table 4, performance
improves from 7' = 1 to 7" = 3 and then saturates.
Thus, all benchmarks reflect multi-turn refinement
rather than a single-pass update.

Table 1: Main benchmark and ablation results on
TEEMIL-H and TEEMIL-K. We report macro-F1 scores.
Ablations remove one component of INDRA at a time.

TEEMIL-H ‘ TEEMIL-K

Method Fi
INDRA 0.984 0.950
INDRA (- IRT only) 0.974 0.934
INDRA (- Entropy only) 0.972 0.936
INDRA (- Graph only) 0.976 0.930
CASSA (mBERT) (Ravikiran et al., 2025a) 0.973 0.933
GISA (mBERT) (Ravikiran et al., 2025b) 0.961 0.912
Auto-SVM (Supraja et al., 2017) 0.578 0.712
SOQDE (Hassan et al., 2018) 0.637 0.712
BinGrad-LR (Pado, 2017) 0.591 0.496

The ablation study highlights the contribution of
each component. Removing IRT-informed initial-



Table 2: Effect of graph coupling parameter 5 on
TEEMIL-H and TEEMIL-K. We report macro-F1 scores.
Best results for each dataset are in bold.

TEEMIL-H [ TEEMIL-K
F1
0 0.976 0.93
0.2 0.979 0.94
0.4 0.984 0.95
0.6 0.982 0.945

Table 3: Effect of temperature parameter 7 on
TEEMIL-H and TEEMIL-K. We report macro-F1 scores.
Best results for each dataset are in bold.

TEEMIL-H [ TEEMIL-K
.
F1
0.5 0.971 0.928
0.7 0.978 0.94
1 0.984 0.951
1.2 0.982 0.947
1.5 0.976 0.939

ization reduces F1 by up to 1.6 points, removing
entropy-driven refinement by 1.2—1.4 points, and
removing graph coupling causes the largest drop
on TEEMIL-K (—2.0 points). The larger overall
gain on TEEMIL-K (+3.76 over GISA vs. +2.23
on Hindi) reflects its agglutinative morphology,
which produces near-duplicate distractors differ-
ing only by suffixes or compounds. Graph cou-
pling stabilizes attention in such cases, while psy-
chometric priors and entropy refinement jointly
prevent premature collapse.

4.3 Ablation Studies

To better understand the contribution of each com-
ponent of INDRA, we conduct a series of ablation
experiments. These studies examine (i) the role
of each design element (IRT priors, entropy re-
finement, graph coupling), (ii) sensitivity to hy-
perparameters such as 5, 7, T, and -, and (iii)
architectural choices including graph construction
weights, sparsity, projection variants, and layer
placement. All results are reported on TEEMIL-H
and TEEMIL-K, two morphologically rich datasets
where distractor plausibility is especially challeng-

ing.

Component Analysis. Table 1 shows the effect
of ablating individual modules. Removing IRT
priors reduces performance to 0.974 (TEEMIL-H)
and 0.934 (TEEMIL-K), confirming that psycho-
metric grounding is essential for stabilizing token
salience. Eliminating entropy refinement leads to
0.972 and 0.936, showing that stepwise sharpen-

Table 4. Refinement dynamics: macro-F1 vs. num-
ber of refinement steps 7" on TEEMIL dev split. Most
of the gain accrues by 7'=3, after which performance
plateaus.

T 1 2 3 4
F1 | 0973 | 0.979 | 0.984 | 0.984

Table 5: Effect of proximal damping ~ on macro-F1
(TEEMIL dev split). v=0.5 achieves the best stable con-
vergence; low ~y converges slowly, while high v desta-
bilizes refinement.

¥ F1 Behavior

0.1 | 0976 Slow, under-reactive
0.3 | 0.979 Stable, improving
0.5 | 0.984 | Best, stable convergence
0.7 | 0.981 Mild overshoot

0.9 | 0.977 Oscillatory / unstable

ing is critical for modeling distractor elimination.
Disabling graph coupling causes the sharpest drop,
especially on TEEMIL-K (0.930), highlighting the
importance of morpho-semantic propagation in ag-
glutinative settings. Together, these results show
that INDRA’s gains emerge from complementary
contributions.

Graph Coupling Strength. Table 2 explores
the effect of the coupling parameter 3. With
B = 0, INDRA collapses to the Graph ablation
(0.976/0.930). Increasing S5 to 0.2-0.4 yields con-
sistent gains, peaking at 0.984/0.950. Beyond this,
performance declines due to oversmoothing. The
larger improvements on TEEEMIL-H confirm that
graph coupling is particularly valuable when dis-
tractors differ only by suffixes or compound mark-
ers, a common phenomenon in agglutinative mor-

phology.

Temperature Scaling. Table 3 shows the effect
of 7 on refinement dynamics. At 7 = 0.5, at-
tention sharpens prematurely, leading to lower re-
call (0.971/0.928). At T = 1.5, attention becomes
too diffuse, producing weaker focus (0.976/0.939).
The best setting (7 = 1.0) achieves 0.984/0.950,
supporting the principle that entropy should be re-
duced gradually rather than collapsed in a single
step. This aligns with the human elimination pro-
cess INDRA seeks to mimic.

Refinement Steps. Table 4 tracks F1 across dif-
ferent iteration counts 7. One step (0.973) under-
refines attention, while three steps achieve the
best trade-off (0.984). Beyond three steps, perfor-
mance plateaus, indicating that excessive refine-



(Amorph, Asem, Asyn) | TEEMIL-H | TEEMIL-K
(1.0, 0.0, 0.0) 0.976 0.938
(0.0, 1.0, 0.0) 0.979 0.934
(0.0, 0.0, 1.0) 0.973 0.931
(0.5,0.5,0.0) 0.981 0.941
(0.5,0.0,0.5) 0.978 0.939
(0.0,0.5,0.5) 0.975 0.933

(0.33,0.33,0.33) 0.984 0.950

Table 6: Effect of weighting graph components. Bal-
anced contributions from morphology, semantics, and
syntax perform best, matching the overall INDRA
benchmark peak.

k TEEMIL-H | TEEMIL-K
4 0.976 0.935
8 0.984 0.950
12 0.982 0.946
16 0.979 0.940

Table 7: Effect of graph sparsity (top-k neighbors). Per-
formance peaks at k = 8, suggesting that a modest
neighborhood balances locality and noise.

ment adds computation without improving results.
This confirms that difficulty estimation benefits
from limited but structured stepwise updates.

Proximal Damping. Table 5 examines the
damping parameter 4. Low v (0.1) produces
sluggish updates (0.976), while high ~ (0.9) desta-
bilizes refinement, causing oscillations (0.977).
A balanced v = 0.5 achieves optimal stability
(0.984/0.950). This shows that proximal damping
is necessary for convergent refinement dynamics
that remain interpretable.

Graph Component Weights. Table 6 evaluates
the relative contribution of morphological, seman-
tic, and syntactic kernels. Morphology-only and
semantics-only variants are competitive (0.976-
0.979 on TEEMIL-H, 0.934-0.938 on TEEMIL-K),
but weaker than the balanced combination. Syntax-
only is the weakest (0.973/0.931). The equal-
weighted graph (0.984/0.950) confirms that com-
bining all linguistic cues yields the most robust
modeling of distractor plausibility.

Graph Sparsity. Table 7 studies the number of
neighbors k retained per token. Small k£ (4) under-
connects tokens (0.976/0.935), while large £ (16)
over-propagates noise (0.979/0.940). A moderate
neighborhood (k = 8) achieves the best trade-off
(0.984/0.950), confirming that distractor modeling
benefits from localized but not overly dense token
connections.

Wp Variant TEEMIL-H | TEEMIL-K
Fixed (7 logp) 0.984 0.950
Learned scalar 0.981 0.944

2-layer MLP 0.980 0.943

Table 8: Variants of the proximal projection W,. The
fixed log-prob projection performs slightly better and is
more stable than learned variants.

Layer Placement | TEEMIL-H | TEEMIL-K
After Layer 4 0.973 0.932
After Layer 8 0.980 0.943

After Final Layer 0.984 0.950

Stacked (8+12) 0.982 0.947

Table 9: Effect of placing INDRA at different layers.
Refinement after the final layer is most effective, with
stacked placement also performing well.

Projection Variants. Table 8 compares differ-
ent projections W, for proximal stability. A
log-prob projection achieves the strongest results
(0.984/0.950), outperforming learned scalar and
MLP mappings. While learned variants offer flexi-
bility, they introduce overfitting risks, whereas log-
prob scaling provides a principled mechanism that
is both stable and interpretable.

Layer Placement. Table 9 explores where IN-
DRA is most effective in the transformer. Inserting
refinement at lower layers (4 or 8) yields weaker
scores (0.973-0.980), as early representations lack
full semantic context. The best results occur when
INDRA is applied at the final layer (0.984/0.950).
Stacked placement (Layers 8+12) improves over
single mid-layer insertion but remains below the
final-layer variant, suggesting redundancy rather
than complementarity.

Overall, these ablations show that INDRA’s im-
provements arise not from a single component, but
from the interplay of psychometric priors, iterative
refinement, and graph-based coupling, with proxi-
mal damping ensuring stable convergence.

4.4 Qualitative Analysis

Language-wise Performance. Figures 1 and 2
show the confusion matrices for TEEMIL-H and
TEEMIL-K test sets, expressed in percentages. On
Hindi, INDRA achieves nearly perfect classifica-
tion, with over 98% accuracy across all three diffi-
culty levels. The few errors that remain are pri-
marily Easy <> Medium confusions, which can
be attributed to dataset imbalance (567 Easy vs.
only 103 Hard). On TEEMIL-K, per-class accu-
racy is slightly lower (94-95%), and the major-



True Label
Easy

Medium

Hard

Medium
Predicted Label

Fig. 1: TEEMIL-H test set confusion matrix. Most errors
occur between Easy and Medium.

True Label

Hard
Predicted Label

Fig. 2: TEEMIL-K test set confusion matrix. Errors are
concentrated in Medium <+ Hard confusions.

ity of errors occur between Medium and Hard.
This aligns with the morphological complexity of
TEEMIL-K, where distractors are often suffixal or
compounded variants of the correct answer. These
figures empirically illustrate the earlier quantita-
tive findings: IRT priors stabilize Hindi predic-
tions, while graph coupling contributes more sub-
stantially to TEEMIL-K.

Error Analysis. Manual inspection of mis-
classified cases reveals three recurring error
types grounded in the TEEMIL-H and TEEMIL-K
datasets.

First, near-synonym distractors continue to con-
fuse the model. For instance, in Hindi a correct
answer such as 39T (study) may be paired with
distractors like 3T&ATU (teaching), which are mor-
phologically related but semantically distinct. Sim-
ilarly, in Kannada, items like 883 (teacher) and m-
O (teacher) are both valid in everyday use, causing
the model to misclassify Medium as Hard.

Second, ambiguous or multi-correct items occur
when distractors are contextually plausible. For ex-
ample, a Kannada question on Tipu Sultan’s wars
listed edonzméde and e3y=eTH as separate op-
tions, both historically associated with his rule.
Such cases are inherently difficult even for human
annotators and often result in inconsistent labels
across annotators.

Finally, oversmoothing effects arise when the

graph coupling parameter 3 is set too high. In such
cases, morphologically close options (e.g., Hindi
F “work” vs. BT “office”) retain excessive
shared plausibility, blurring fine-grained distinc-
tions and leading to reduced accuracy.

Overall, these analyses show that INDRA sub-
stantially improves F1 relative to prior work, while
highlighting open challenges in synonym resolu-
tion, ambiguous distractors, and the need for adap-
tive graph weighting in morphologically rich set-
tings. A detailed set of qualitative case studies is
provided in Appendix F, where Hindi and Kannada
examples illustrate these error categories.

5 Conclusion

We presented INDRA, an iterative difficulty re-
finement attention mechanism for multiple-choice
question (MCQ) difficulty estimation. By inte-
grating psychometric initialization, entropy-driven
iterative refinement, and Indic-aware graph cou-
pling. Our experiments on TEEMIL-H and
TEEMIL-K demonstrate new state-of-the-art perfor-
mance, with absolute gains of up to +3.8 macro-F1
over strong baselines. Ablation studies show that
each component contributes complementary bene-
fits, while error analysis highlights INDRA’s abil-
ity to model subtle morphological and semantic
distractors in low-resource, linguistically complex
settings.

Despite these advances, challenges remain. The
observed gains, though consistent, are modest in
absolute terms, and evaluation was limited to two
Indic languages. Future work will extend INDRA
to multilingual and multimodal MCQs, explore
adaptive graph weighting for robust handling of
near-synonym distractors, and integrate external
lexical resources to improve generalization. Be-
yond accuracy, a promising direction lies in lever-
aging INDRA’s psychometric interpretability for
auditing fairness and bias in educational assess-
ment, supporting more transparent and equitable
Al for education.

Limitations

Although INDRA achieves consistent improve-
ments over prior methods, several limitations re-
main. First, our evaluation is restricted to two
Indic languages (Hindi and Kannada), and there-
fore the claims do not yet generalize across the
broader Indic landscape such as Bengali, Telugu,
Marathi, or Tamil. The observed gains, while



stable, are modest in absolute terms (typically
1-1.6 F1), in part due to the strong ceiling of
mBERT-based baselines and the sensitivity of IN-
DRA to hyperparameters such as graph coupling
strength 5 and temperature 7. Additionally, the
graph coupling mechanism may oversmooth token
interactions when distractors are extremely simi-
lar (e.g., near-synonyms or shared morphological
suffixes), which can reduce discrimination among
fine-grained variants.

Second, INDRA is evaluated only within an
encoder-based architecture. We do not include
comparisons with generative LLMs (e.g., GPT-
style models), as TEEMIL’s fixed-format MCQs
align better with encoder-only models and cur-
rent generative scoring pipelines are not directly
comparable; nonetheless, extending INDRA to
decoder-based or instruction-tuned LLMs is an im-
portant direction for future work. Finally, psy-
chometric priors for token-level discrimination
and difficulty rely on dataset-driven heuristics
and may require adaptation for non-curricular do-
mains. Broader multilingual evaluation and adap-
tive graph weighting present further opportunities
to improve generalization and robustness.

Ethical Considerations

This work focuses on MCQ difficulty estimation
for educational use, and we outline key ethical as-
pects. First, the TEEMIL datasets used in this
study are derived from publicly available. Second,
while INDRA improves transparency through psy-
chometric priors, automated difficulty estimation
must be used cautiously, as systematic errors could
disadvantage learners or reinforce curricular bi-
ases. The method may underperform on underrep-
resented linguistic varieties or dialectal forms, em-
phasizing the need for broader multilingual eval-
uation and regular auditing. Finally, INDRA is
intended as a decision-support tool rather than a
replacement for human educators; its predictions
should be supplemented with expert judgment to
ensure equitable and pedagogically appropriate de-
ployment in real-world educational settings.
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A Dataset Grounding and Annotation
Protocols

For ease of understanding, here we summarize the
TEEMIL benchmark dataset.

A.1 Data Sources

We use TEEMIL-H (Hindi, 4,689 MCQs) and
TEEMIL-K (Kannada, 4,215 MCQs) (Ravikiran
et al., 2025c). Both were derived from state-
board textbooks spanning history, civics, geogra-
phy, economics, and physical education (Classes
6-12). Textbooks were obtained in EPUB format
under permissive licenses, converted into plain
text, and curated to retain only pedagogically rel-
evant material.

A.2 MCQ Creation

Following the TEEMIL framework, approxi-
mately 25,000 candidate MCQs were automati-
cally generated per language using a multistage
prompting pipeline adapted from Maity et al.
(2024). From these, two instructors and four stu-
dent assistants manually selected ~5k questions
per language that satisfied grammaticality, curric-
ular alignment, and Bloom’s Taxonomy balance.

A.3 Difficulty Annotation

Each MCQ was labeled into three difficulty lev-
els (Easy, Medium, Hard). Student annotators
(Classes 8—11) solved each question and assigned
a difficulty score. At least two annotators labeled
every MCQ. Disagreements were resolved through
targeted questionnaires and adjudication by NLP
researchers.
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A.4 Inter-Annotator Agreement (IAA)

Cohen’s k was used to measure reliability, yield-
ing k = 0.65 for Hindi and x = 0.69 for Kan-
nada, both indicating substantial agreement. This
ensures the difficulty labels used in our experi-
ments reflect consistent human judgments rather
than noisy annotations.

A.S Bloom’s Taxonomy Distribution

To capture cognitive diversity, each MCQ was
also mapped to Bloom’s levels. For TEEMIL-
H: ~60% “Remember,” ~38% “Understand,”
and ~2% higher-order (Apply/Analyze). For
TEEMIL-K: a similar distribution holds, but with a
higher proportion of morphologically complex dis-
tractors. This imbalance underscores the challenge
of difficulty estimation, especially for medium and
hard items.

A.6 Notable Dataset Properties

* Option Quality: BLEU and cosine similarity
analysis confirms that TEEMIL-K distractors
are more lexically and semantically similar to
correct answers than TEEMIL-H.

* Presence of NOTA: 487 Hindi and 132 Kan-
nada items include “None of the Above” as
an option, which prior work shows adds am-
biguity to difficulty estimation.

* Curriculum-Groundedness: All questions
are sourced from formal state-board curricula,
ensuring educational authenticity.

A.7 Relevance to INDRA

The dataset properties directly motivate INDRA’s
design choices.

* The morphologically confusable distractors
in TEEMIL-K highlight the need for graph-
based coupling to propagate plausibility
among near-duplicate tokens.

* The high proportion of fact-recall questions
in TEEMIL-H motivates psychometric initial-
ization, anchoring token salience with dis-
crimination and difficulty parameters.

* The presence of NOTA and subtle distrac-
tor variants necessitates entropy-driven iter-
ative refinement, which gradually eliminates
implausible options instead of collapsing pre-
maturely.

Thus, the TEEMIL datasets not only provide the
evaluation benchmark but also ground the method-
ological innovations of INDRA in authentic educa-
tional challenges.

B Mathematical Analysis and Stability
Guarantees of INDRA

B.1 Notation Recap

Let X € R™*? denote token embeddings. At re-
finement step ¢, INDRA maintains logits /() &
R™*™ and an attention distribution

pt) = softmax(l E(t*1)> ,

;
with temperature 7 > 0. Graph coupling uses
a sparse, row-normalized matrix G € R"*" and

proximal damping with coefficient v € (0, 1]. The
unified update is

(0 = (1= 7)€ 4 4Wy (T + BG) p,
where 8 > 0 controls diffusion strength.

B.2 Convergence of Refinement Dynamics
Lemma 1 (Boundedness). For any initialization
(0 and B > 0, the sequence {{)} remains
bounded, i.e.,

60|z < max{[[€© |, L1212},

Proof. Since G is row-normalized,
I(1+BG)pD )2 < (1+8)pW 2 < (1+). The
proximal update is an exponential moving average,
which guarantees boundedness by convexity. [

Lemma 2 (Contractivity). If0 < v < land T >
0, the mapping

F(£) = (1 — )l + AW, (I + BG) softmax(L1¢)
is a contraction on a compact domain.

Proof. The Jacobian of the softmax satisfies
HJsoftmaxHZ < ﬁ Thus

[F() = F({)|l2 <1 =)~z (6)
4 Y ”WpH2 %

47

(L+B) 1€~ ®)

Choosing «, 7 such that the coefficient is < 1 en-
sures contractivity. O

Corollary 1 (Stability Guarantee). Under the
above conditions, 0 s ast — oo, and the
refinement process converges monotonically.



B.3 Computational Complexity

Let n be the number of tokens, k the graph sparsity
(top-k neighbors per row), and 7' the number of
refinement steps.

* Graph Construction: O(n?) for pairwise
similarity, reduced to O(nk) with top-k spar-
sification.

* Refinement Update: Each step requires
a matrix-vector multiplication with G, i.e.
O(nk).

* Overall Cost: O(Tnk + Tnd), where nd
arises from standard self-attention.

Thus INDRA adds only a sparse diffusion over-
head on top of transformer attention, scaling lin-
early with k£ and refinement depth 7.

B.4 Interpretability via Token-Level
Parameters

Psychometric initialization introduces token dis-
crimination a; and difficulty b;:

(O _ . 4k

1] \/&
anchoring attention weights to interpretable token
salience. Aggregating {a;,b;} over an option re-
covers item-level IRT parameters, providing a the-
oretical bridge between educational measurement
and neural refinement.

— b,

B.S Practical Guidelines
To ensure stable training:

1. Use v = 0.3-0.5 to balance responsiveness
and damping.

2. Set 7 =~ 1.0 to avoid premature collapse or
over-diffusion.

3. Restrict 8 < 0.5 to prevent oversmoothing
across distractors.

4. Limit T' < 3 iterations, since performance
gains saturate beyond this (see Appendix F).

C INDRA Working

Sequence of Operations. Each INDRA atten-
tion head follows the same sequence of steps:

1. Imitialization. Compute token-level logits us-
. . ikl
ing psychometric scalars: El(?) = agj - qT; -

bij.

2. Iterative Refinement. At each step ¢,
compute a softened distribution p(t) =
softmax(%é(t_l)), where 7 controls sharp-

ness.

3. Graph Coupling. Diffuse plausibility across
morphologically, semantically, or syntacti-
cally related tokens: p(¥) = (I 4+ BG) p®.

4. Proximal Stability. Update logits with
damping to avoid oscillation: /() = (1 —
N 4 Wy,

5. Final Distribution. After 7" refinement steps,

output p'™NPRA — softmax(%E(T)).

This modular flow ensures that INDRA behaves
as a single attention operation: psychometric pri-
ors set the starting point, refinement narrows fo-
cus, graph coupling shares plausibility across con-
fusable tokens, and proximal stability guarantees
smooth convergence. All steps are encapsulated
inside the attention update, making INDRA a drop-
in replacement for standard self-attention.

D Psychometric Initialization Details

To complement the description in Section 3.1, we
provide the exact procedure used to seed token-
level discrimination a;; and difficulty b;; from
dataset-informed priors.

Initialization. Before refinement begins, IN-
DRA seeds the logits with a token-level extension
of Item Response Theory (IRT). Each token x;; (to-
ken j in option ¢) is assigned two scalars:

* Discrimination a;;: measures how informa-
tive the token is for distinguishing the correct
option from distractors. Tokens unique to one
option receive higher values, while tokens
shared across distractors are down-weighted.
Morphological uniqueness (e.g., distinctive
suffixes) further increases a;;.

* Difficulty b;;: encodes how much the to-
ken contributes to the item’s overall hardness.
These values are initialized from dataset pri-
ors e.g., human difficulty labels in TEEMIL
so that Easy items map to lower values, Hard
items to higher values, and Medium items in-
terpolate in between.

The initial logits are then defined as



This ensures that attention starts from a plausi-
ble difficulty-aware bias rather than random initial-
ization: informative tokens are emphasized, diffi-
cult tokens are penalized, and the refinement loop
has a stable and interpretable starting point. Algo-
rithm 1 formalizes the computation step by step.

E Additional Algorithmic Details and
Analysis

E.1 Graph Construction and Sparsity
(Method §3.3)

In Method §3.3 we introduced the token similar-
ity graph G. Here we expand on its construction.
The graph integrates three sources of linguistic
affinity: (i) edit-distance for morphological simi-
larity, (ii) cosine similarity of contextual embed-
dings for semantic proximity, and (iii) dependency
adjacency for syntactic relatedness. The matrix is
row-normalized to ensure ) j (;'ij = 1. To main-
tain scalability, we retain only the top-k = 5 neigh-
bors per token. Sensitivity analysis shows stable
performance for k € [3, 7].

E.2 Convergence Behavior (Method §3.4-3.5)

In Method §3.4 we proposed proximal damping to
guarantee stability of refinement. Here we empiri-
cally validate that: (1) performance improves from
T = 1to T = 3 iterations, then plateaus ; (2)
damping with v = 0.5 prevents oscillations when
8 < 0.5; and (3) larger 5 occasionally causes over-
smoothing. These results support the stability guar-
antee derived in Appendix B.

E.3 Computational Overhead (Method §3.5)

The refinement update in Method §3.5 requires
O(nk) operations for graph propagation in addi-
tion to standard O(nd?) transformer attention. On
TEEMIL-H/K (average n = 55 tokens), this over-
head is marginal: INDRA runs at only 1.08x the
cost of a plain mBERT baseline. Thus the pro-
posed refinement is scalable to real-world MCQs.

E.4 Design Choices (Method §3.3-3.5)

We experimented with alternative formulations:
symmetric normalization of G, Gumbel-softmax
instead of temperature scaling, and direct entropy
regularization. None improved over the current
design. Row-normalization, temperature scaling,
and proximal damping consistently yielded the
most stable training and interpretable dynamics.

F Experimental Setup Additional Details
F.1 Model Training Details

All models are implemented in PyTorch and
trained on a single NVIDIA A100 GPU. Unless
otherwise stated, we follow the training setup of
Ravikiran et al. (Ravikiran et al., 2025¢):

+ Optimizer: AdamW, learning rate 2 x 1075,
weight decay 0.01.

* Batch size: 16.
* Maximum sequence length: 256 tokens.

« Early stopping: patience of 3 epochs based on
validation macro-F1.

* Epochs: capped at 10 (most models converge
in 4-6).

F.2 INDRA Hyperparameters

We conduct validation sweeps over the refinement
parameters:

» Iterative steps 7' € {1,2,3,4}, with T = 3
performing best.

» Temperature 7 € {0.7,1.0,1.3}, with 7 =
1.0 optimal.

« Graph coupling strength 5 € [0,0.5], best at
5 =04

* Damping coefficient vy €
{0.1,0.3,0.5,0.7,0.9}, best at v = 0.5.

* Graph sparsity: top-k = 5 neighbors retained
per token.

F.3 Baselines and Comparisons

All baselines (CASSA, GISA, Auto-SVM, SO-
QDE, BinGrad-LR) use the same mBERT encoder
backbone and identical training protocol as in
TEEMIL (Ravikiran et al., 2025¢), ensuring that
performance differences arise solely from atten-
tion refinements.

G Error Analysis and Case Studies

G.1 Rationale

While quantitative results demonstrate INDRA’s
overall gains, we provide qualitative case stud-
ies from the TEEMIL-H (Hindi) and TEEMIL-K
(Kannada) test splits. These examples illustrate
how morphologically and semantically confusable



distractors challenge baseline models, and how IN-
DRA’s iterative refinement provides more human-
like elimination trajectories.

G.2 Hindi Examples

Example 1 (Medium Difficulty). MCQ: 1930
& F H [§fey THR gRI YRT THR 7 GaR &
U1 <hl T 9 AT7?

Options: (A) YRJ WEHR AATH, (B) WRAT
Tdsar AT, (C) WRd SRR GUR ffam, (D)
o8 9 1 Tl

Gold Answer: (C) YRd SRR R e,

Observation: All options share the prefix WRd
TWHR, and differ only in suffixes like 3f&fAam
vs. U . Baselines (CASSA, GISA) fre-
quently confuse (A) vs. (C), while INDRA’s graph
coupling propagates plausibility among morpho-
logically similar variants, then gradually sharpens
attention toward (C).

Example 2 (Easy Difficulty).
& e HeA F R A E?

Options: (A) faum @, (B) fagm ufvwe, (C) fa-
Y@ (variant spelling), (D) HIe.

Gold Answer: (A) faem T,

Observation: Here, spelling variants (B vs. C)
introduce confusion. CASSA often misclassifies
due to surface similarity. INDRA’s psychometric
initialization assigns higher discrimination to to-
kens like |4T, helping it distinguish (A) from vari-
ants.

MCQ: 75T THR

G.3 Kannada Examples

Example 3 (Medium Difficulty). MCQ: e3pe3-
23 AETOF 9530 BT 232392390 OR?

Optlons (A) 3B, mwcﬁrﬁ%fab SHoBR=-
e, (B) R0R3S é@awrﬂ@ém SBZeD, (C) ITIT
eﬁdﬁgé BA DN E@OSJFK)&F&ES DBIDRZ-
20, (D) BT, BEIHIL.

Gold Answer: (C).

Observation: All options are grammatically cor-
rect and contextually plausible. Baselines dis-
tribute probability across (A)/(B)/(C). INDRA, via
entropy-driven refinement, gradually rules out (A)
and (B) and converges on (C), mirroring human
reasoning.

Example 4 (Easy Difficulty).
ARVTODNG %%3’&63833?

Options: (A) 2IR08%, OT,3 23, (B) 2%~
R 203y ﬁoﬁw\%ojoe?” D3BRB3S, (C) L3R, ,*’voxw—
& 23y emdf%er{de; fg}e‘fbcjﬁé, (D) edINLE),
BT Y,

MCQ: Ind

Gold Answer: (A).

Observation: Distractors (B, C) are semanti-
cally close. INDRA’s token-level discrimination
highlights 223%08%, OTS as diagnostic, yield-
ing correct classification.

G.4 Takeaways

* Morphologically close distractors (Hindi suf-
fix variants, Kannada suffix $003) are hard-
est for baselines.

* INDRA’s graph coupling and entropy refine-
ment help separate subtle variants without col-
lapsing prematurely.

* Qualitative inspection confirms that IN-
DRA’s design aligns with human elimination
strategies, not just numeric gains.

Appendix H: Transliteration and
Translation of Examples

For completeness and reviewer clarity, we pro-
vide transliterations and English translations for
all Hindi and Kannada examples appearing in Sec-
tions 1, 3.3, and 4.4 of the paper.

H.1 Hindi Examples

Example H1 (Section 1). Original: ISY 42-
FR & F9d AGT H RTAW 8?  Transliteration:
Rajya sarkar ke nichle sadan ka kya nam hai?
Translation: What is the name of the lower house
of the state legislature?

Options:
(A) T I Vidhan Sabha - Legislative Assem-
bly
(B) faum uRkse  Vidhan Parishad - Legislative
Council
(C) 9 Sansad - Parliament
(D) =arauTeredl Nyayapalika - Judiciary

Example H2 (Section 1). Original: 1930 &
e | ofeer TXhR g1 R SRR § R & g
T T AH AT?  Transliteration: 71930 ke dasak
mem Britis sarkar dvara Bharat sarkar mem sud-
har ke prayas ka kya nam tha?
Translation: In the 1930s, what was the name
of the British Government’s attempt to reform the
Government of India?

Options (abridged):
(A) 9Rd WeR ARETH  Bharat Sarkar Ad-
hiniyam - Government of India Act
(B) VR =1 AT Bharatiya Svatantrata
Adhiniyam - Indian Independence Act



(C) ¥IRA THR GUR ARTH Bharat Sarkar Sud-
har Adhiniyam - Government of India Reform Act
(D) ST A FRIE el Inmein se kot nahim - None of

these

H.2 Kannada Examples

Example H3 (Section 1). Original: pe3323
AETO® 9538 B30 23302390 O0?  Transliter-
ation: Lokasabhe spikar avara pramukha javab-
dari enu?
Translation: What is the main responsibility of
the Lok Sabha Speaker?

Options (abridged):
(A) BHIRVNSR,F0RRIT Masiidegalannu
mandisuvudu - Introducing bills
(B) Z0DEBRNGRY, SBR  Karyakrama-
galannu nadesuvudu - Conducting sessions
(C) 3BIT @Qﬂﬁg@ B2 BN IDFB®H DBI-
DBRRT Sadanada adhyaksate vahisi sugama
nirvahane khacitapadisuvudu - Presiding over the
house to ensure smooth functioning
(D) RTrT[IY BEIORRTD  Sarkaravannu
pratinidhisuvudu - Representing the government

Example H4 (Section 4.4). Original: 230-
3nefe 330 3R® CVBRTR JFD -
0 OJ?  Transliteration: Bharatadalli kar-
mikarada kadime utpadtakatege pramukha karana
enu?
Translation: What is the main reason for low
worker productivity in India?

Options (abridged):
(A) 3323¢8 3038 Turabeti korate - Lack of train-
ing
(B) R05&S 30338 Sallghatane korate - Lack of
organisation
(C) oDz 8R38 Nayakatvada korate - Lack
of leadership
(D) BedIRNSQ BRRBR 9, Meélinavu-
galalli yavudii illa - None of the above

Example H5 (Section 4.4). Original: 1T
AB0TRODNY 335 [exH?  Transliteration:
Nagara samudayagala vaisistyavénu?
Translation: What is a key characteristic of urban
communities?
Options (abridged):

(A) »SR0oamw, WOBE By, Janasankhyd san-
dﬁate heccu - High population density

(B) R =) #oﬁw@cﬁaq NIBRBJS  Bhase
mattu sa Dskﬁtiyalli ekariipate - Uniformity in lan-

guage and culture

(C) 2R, Soﬁwé B @Ozﬁmﬁeﬁd@q ﬁéadﬁé
Bhase, sallskrti mattu udyogadalli vaividhyate -
Diversity in language, culture, and employment

(D) RedIINSSBROTR /LY Melinavugalallu

ondu illa - None of the above
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