

***“WHEN DATA IS SCARCE, PROMPT SMARTER”...APPROACHES TO
GRAMMATICAL ERROR CORRECTION IN LOW-RESOURCE
SETTINGS***

BHASHA TASK-1 INDICGEC DEMONSTRATION

Somsubhra De¹, Harsh Kumar¹ and Arun Prakash A^{1,2}

¹ IIT Madras, ² AI4Bharat

**IJCNLP-AACL
2025**

- Grammatical correctness essential for clear and effective communication ...
- In the NLP field, developing systems that can automatically detect and fix sentence level grammatical errors is a significant area of research
- GEC has seen great success for languages like English, **applying these advancements to many other low-resource Indic languages has been challenging, why?**

METHODOLOGY

Given a parallel corpus $D = \{(x^{(i)}, y^{(i)})\}_{i=1}^N$, where $x^{(i)}$ is a noisy input sentence and $y^{(i)}$ is its grammatically corrected counterpart, the model is trained to minimize the negative log-likelihood (NLL) of the target sequence conditioned on the input:

$$\mathcal{L}_{\text{GEC}}(\theta) = - \sum_{i=1}^N \sum_{t=1}^{|y^{(i)}|} \log P_\theta \left(y_t^{(i)} \mid y_{<t}^{(i)}, x^{(i)} \right) \quad (1)$$

What are we dealing with?

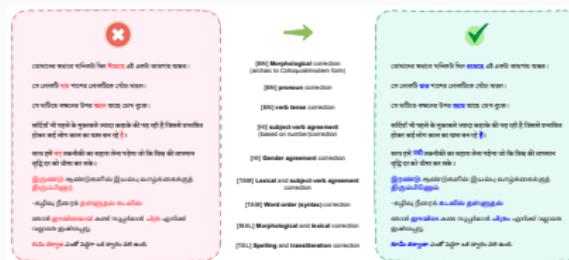
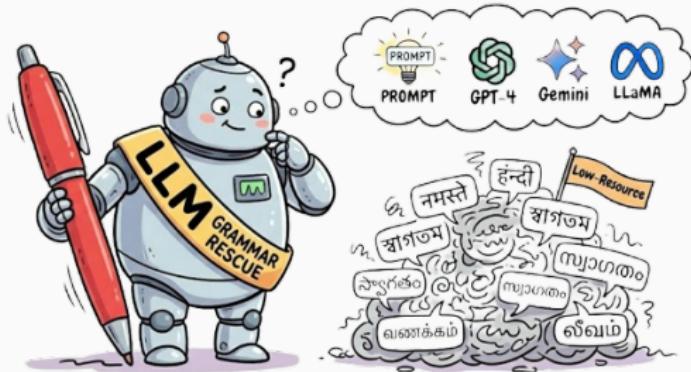


Figure 1: Examples from the GEC task dataset. Input sentence **X** (with errors in red) - ground truth **✓** (with corrections in blue) pairs. Error types have been mentioned, based on our understanding.

How Well Can LLMs Come to Indic Grammar Rescue?



We utilize three large language models – **GPT4.1 mini**, **Gemini-2.5-Flash** and **Llama-4-Maverick 17B-128EInstruct** in zero and few-shot prompting paradigms. These models are employed as *instruction-following LLMs with role-based prompts*.

Additionally for Hindi, we fine-tuned (we adopt LoRA for PEFT) the **Sarvam-M 24B2** multilingual model using Hi-GEC dataset.

METHODOLOGY

Prompt

""You are a <Language> Grammatical Error Correction assistant, in low resource settings. Your task is to accurately identify and correct grammatical errors in the given <Language> sentence. Correct all types of grammatical errors:

Verb usage: Correct conjugation, tense, aspect, and agreement with the subject.,

Pronouns: Usage of proper personal, possessive, and reflexive pronouns.,

Prepositions: Correct use of postpositions or prepositions in context.,

Fix spelling mistakes, diacritic marks (matras), and punctuation errors.,

Gender and number agreement: Ensure adjectives, nouns, and verbs match in gender (masculine/feminine) and number (singular/plural),

The output should be ONLY the CORRECTED sentence, without any extra text or explanation. *If the input is already correct, return it unchanged.* Please ensure the corrections follow the rules and preserve the intended meaning.

Below are 10 random sentences for your reference""

RESULTS

We ranked **1st** in Tamil (GLEU: 91.57) and Hindi (GLEU: 85.69)

2nd in Telugu (GLEU: 85.22), 4th in Bangla (GLEU: 92.86) and 5th in Malayalam (GLEU: 92.97).

Model	TAM			MAL			HI		
	GLEU	$F_{0.5}$	BERT-score	GLEU	$F_{0.5}$	BERT-score	GLEU	$F_{0.5}$	BERT-score
Gemini-2.5-Flash (fs)	91.57	87.82	97.83	92.97	88.48	97.89	84.61	88.01	95.69
GPT-4.1 mini (fs)	86.00	78.97	96.52	91.78	84.72	97.08	85.69	87.86	95.76
GPT-4.1 mini (zs)	85.51	78.45	96.38	92.34	84.62	97.24	85.37	87.80	95.53
LLaMA-4 maverick (zs)	88.70	81.50	96.84	92.68	85.38	97.20	83.10	86.04	94.64
LLaMA-4 maverick (fs)	85.62	77.75	95.98	90.75	83.22	96.65	85.37	87.35	95.56

Model	BN			TEL		
	GLEU	$F_{0.5}$	BERT-score	GLEU	$F_{0.5}$	BERT-score
Gemini-2.5-Flash (fs)	92.23	89.61	97.10	84.16	76.96	94.92
GPT-4.1 mini (fs)	92.86	89.27	97.35	85.22	77.68	95.28
GPT-4.1 mini (zs)	91.62	86.98	96.79	84.74	76.75	95.15
LLaMA-4 maverick (zs)	90.39	86.48	96.30	83.01	74.20	94.28
LLaMA-4 maverick (fs)	92.00	88.02	97.19	82.02	74.28	94.08

Figure 2: Performance of different approaches on the test set across languages. Highlighted cells indicate the best-performing model for each language, while underlined values denote the overall best score in the task.

The finetuned Sarvam-M significantly failed to capture the correct edits, achieving only **13.81** GLEU in Hindi.

DISCUSSION

- Experiments revealed that even simple prompting strategies could lead to impressive results, even with limited data.
- LLMs when guided by well-designed prompts, substantially outperform fine-tuned Indic-language models like Sarvam-22B thereby illustrating the exceptional multilingual generalization capabilities of contemporary LLMs for GEC.
- Shows that instead of needing massive amounts of language-specific data to train models from scratch, we can leverage the existing knowledge within large, general-purpose LLMs.
- Where did the LLMs fail? We did some qualitative analysis and found out recurring patterns.
- A high Fertility Score has two direct consequences for GEC: increased latency and Context Window Reduction. To quantify this impact, we looked into the tokenizer fertility.

DISCUSSION

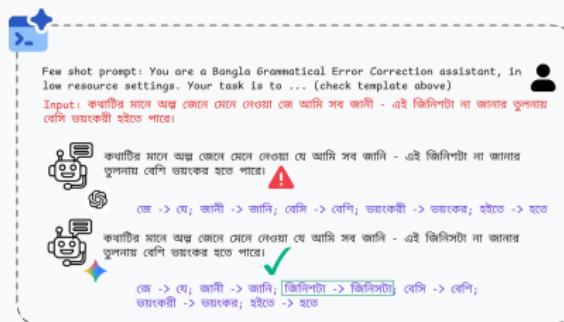


Figure 3: Comparison of model outputs on a **multi-correction** example (Transl. Knowing only a little about something and assuming that I know everything can be more dangerous than not knowing at all.) from test set. *Gemini's output fully aligns with the gold standard, while GPT omits one necessary edit.*

Language	Script Family	GPT-4.1 Mini	Gemini 2.5 Flash	Llama 4 Maverick
HI	Devanagari	1.44	1.31	1.55
BN	Eastern Nagari	2.32	1.76	2.77
TAM	Dravidian	3.09	2.54	5.88
TEL	Dravidian	2.97	2.87	4.32
MAL	Dravidian	3.20	3.10	4.58

Figure 4: Cross-Model Tokenizer Fertility Comparison

DISCUSSION

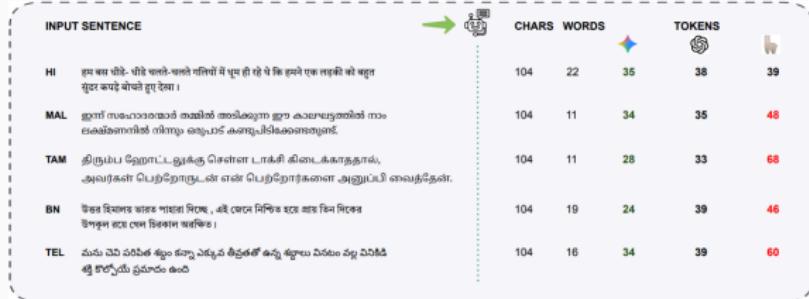


Figure 5: Tokenization density across the architectures

Overall, the study highlights the immense potential of large language models and prompt-based techniques for grammatical error correction in low-resource settings.

For the paper, data and codes, please scan the QR.