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Grammatical Error Correction
for Indic Languages is Crippled
Crippled by a Severe Lack of

Annotated Data Official Training Data is Extremely
Limited
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Indic languages present unique
challenges for GEC due to high
morphological complexity, rich

inflectional patterns, and free

word order. However, the primary
bottleneck is the extreme scarcity of high-
quality, annotated training data, which
makes traditional supervised learning
insufficient for robust performance.
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“Linguistically informed synthetic error-injection
erron framework for Indic GEC data augmentation.”

Our Solution: A Linguistically-Grounded Pipeline to
Synthetically Augment Training Data by Over 10x

To overcome data scarcity, we developed a synthetic data augmentation pipeline. By
programmatically injecting realistic grammatical errors into clean sentences from
corpora like IndicCorp v2, we expanded the training set from under 1,000 to over

10,000 high-quality pairs per language.

: @
“Clean Sentences (from “Controlled Error Injection “10k+ Synthetic
IndicCorp v2, Wikipedia)” Framework (42 linguistic rules) ‘Incorrect/Correct’ Pairs”
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Editorial Academia

The Pipeline Injects Controlled Errors Across 10
Linguistic Categories to Simulate Natural Mistakes

4 53 it

Spelling Word Agreement Structure
Random H3 swaps (lefd) & Morphological inflection Random omission, duplication,
visually similar consonant mutations for gender (g - 1), or insertion of postpositions
substitution (e.g., d - ). number (8 = %), and case (1 - (4, &I, H) and adverbs.
).

Example: Person Agreement Error (Hindi)

Incorrect: ‘H TpeT SiTdl 21’ (mair skl jatT hai)
Correct: 'H ¥pel SITAT g1’ (mairh skl jata hirm)

(I go to school.)




We Fine-Tuned Two Lightweight Multilingual Models
to Establish Reproducible Baselines

Models

mT5-small

300M parameters. A general-purpose,
massively multilingual text-to-text transformer

pre-trained on the mC4 corpus.

IndicBART

A sequence-to-sequence model pre-trained
specifically on 11 Indic languages, designed to
better capture their linguistic nuances.

Training Configuration

Input Format:
‘correct this: <incorrect sentence>’

Language Tags:
“[HI], [BN], [TA], [TE], [ML] prepended
for multilingual training.

Key Hyperparameters

Optimizer: AdamW

Learning Rate: 5e-5 (mT9S) / 3e-5 (IndicBART)
Batch Size: 16-32

Epochs: 10-15 (with early stopping on dev GLEU)



Our Data-Augmented Approach Achieved Competitive
Performance, with mT5-small Leading Across All Languages

Final Test Set Performance (GLEU Score %) B mT5-small M IndicBART
86.03 GLEU Score on Tamil,
100 ranking 5th in the shared task.
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Error Analysis Reveals High Efficacy on Spelling and
Grammar, while Semantic Errors Remain a Challenge

Correction Performance by Error Type
(Across All Dev Sets)

Spelling 95%

Punctuation 92%
Duplication 90%

Grammar

Word Choice

Structural

Semantic
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Key Insights

» "High Performance": Models effectively
corrected surface-level errors like spelling
and punctuation (>90%).

 "Lingering Challenge": Deeper, meaning-
based errors (Semantic, Structural) proved
more difficult.

« "Language-Specific Note": Morphological
and word-order errors were particularly
challenging for Dravidian languages (Tamil,
Telugu, Malayalam).



Linguistically-Informed Data Augmentation is a Powerful
and Scalable Strategy for Low-Resource Indic GEC

Introduced a novel, linguistically-informed framework for synthetic
== error injection in Indic languages.

Demonstrated its effectiveness in scaling limited annotated data by
over 10x, significantly improving model performance.

@ Established strong, reproducible baselines using lightweight,

publicly available multilingual models (mT5-small and IndicBART).

Proved that this approach effectively helps bridge the performance
gap caused by data scarcity in morphologically rich, low-resource

/ i\ languages.



Acknowledging Limitations and Charting the
Path Forward

Limitations Future Directions
* Ecological Validity: Synthetic errors may  Incorporate real learner corpora to
not fully capture the diversity of real- improve error distribution.

world mistakes made by human learners.

* Model Scope: Evaluation was limited to
Model Scope: Evaluation was limited to

 Evaluate larger, more powerful language-
specific models (e.g., BanglaTs).

two multilingual models, excluding « Perform human evaluations to assess
stronger language-specific alternatives. practical usability.

» Evaluation Metric: Relied solely on the * |nvestigate advanced cross-lingual and
automatic GLEU metric without human few-shot learning approaches for ultra-
assessment of fluency or meaning low-resource settings.

preservation.



