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LLMs for Low-Resource Languages
Sovereign AI Challenges

Why?

✓ Significant performance gap exists in multilingual LLMs for low-resource languages.

✓ Lack of high-quality alignment data (SFT/RLHF) for low-resource languages hinders model performance.

✓ Existing datasets have limited coverage and poor data quality.

✓ Large-scale alignment requires at least 100k samples each for SFT and RLHF.

✓ Collecting and labeling data in that scale for non-English languages is costly and time-consuming.

• Multilingual LLM: A language model inherently trained on 50+ languages to understand and generate text 
across them.

• Language Adaptation: Fine-tuning a multilingual LLM for specific languages or language groups to enhance its 
performance and accuracy.

• Despite the availability of many multilingual models, there is still a need for language-specific LLMs or language 
adaptation.
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Current Approach: Standard Translation
Vanilla Machine Translation

• Standard line-by-line translation often performs poorly in 
code, complex mathematics expressions, and complex 
structured text (e.g. JSON, XML) and textual tables

                           

                    

                                     

          

        

                                                            

                                              

     

                      

                         
                    

                                           
               

         
       
                                                          
                                                   
     
     

                      

                                                               
           

                                                          • Standard line by line translation miss out the context hence performs 
poorly in code-mixed text
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✓ Selective Translation + Dataset Blending

✓ Quality Filter

✓ Model Alignment

✓ Evaluation

Our Approach
Selective Translation + Quality Filtering

Overall training pipeline comprising translation, filtering, SFT, and 
DPO stages.
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Selective Translation
Selective translation in action

• It’s a technique where a LLM is specifically 
instructed to translate only the linguistically 
adaptable portions of a given text, while 
meticulously preserving certain non-
translatable elements.

• Non-translatable elements might include

• Code snippets

• Complex mathematical expressions

• Tabular data

• Tool calling data

• Other formatted structured text (JSON, XML 
etc.)

                           

                    

                                     

          

        

                                                            

                                              

     

                      

                                                             
             

                                                          

                                                        
            

                         
                    

                                           
               

         
       
                                                           
                                                   
     
     

                      

                        
                    

                                        
             

        

                                                  
                                                 

     

                      

We will be comparing Google Translate from GCP (Google Cloud Platform) vs Llama 3.1 405B as our Translator LLM
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• FAITH Filtering (Translation Quality)

• Fluency

• Accuracy

• Idiomaticity

• Terminology

• Handling of Format

• Alignment Filtering (Prompt-Response Alignment)

• Coherence between the translated query and 
translated response

Percentage of LLM and GCP translated SFT data filtered by the 
Llama-3.1-Nemotron-70B-Instruct judge model, representing 

samples not achieving full scores in FAITH evaluation.

(Lower the better)

Quality Filter
Filtering low quality translated data



NTECH2025NVIDIA CONFIDENTIAL. DO NOT DISTRIBUTE.

Data Evaluation

• LLM-based translations have always been 
preferred by the judge over GCP.

• These preferences are especially strong in 
coding, tool-calling, and mathematical data.

A/B comparison of GCP vs LLM translation data

A/B comparison of translation quality, judged by Llama-3.1-

Nemotron-70B-Instruct. The graph illustrates the percentage preference for LLM, GCP, 

both, or neither across various SFT dataset categories

(Higher the better)



NTECH2025NVIDIA CONFIDENTIAL. DO NOT DISTRIBUTE.

Results
Observations and inferences

• Impact of English Alignment Data

• Models trained on Llama-3.1-405B translations 
outperform those using GCP translations across all 
benchmarks.

• Adding Hindi data alongside English greatly 
enhances performance, even with just 20k high 
quality samples.

• Accuracy keeps improving with more Hindi data, 
stabilizing around 60k samples.

• Impact of filtering and fluency analysis

• LLM-based translations score higher in fluency and are 
preferred over GCP for key tasks.

• We are able to achieve the same accuracy using half the 
data, thus improving the training efficiency. 
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Application to Nemotron-Hindi-4B-Instruct
Open Model

• Here we have applied our selective 
translation recipe to our previously released 
Nemotron-4-Mini-Hindi-4B model, that 
was trained using standard translation data.

• We can see visible improvements across 
benchmarks in our latest v2 model.

• Major jumps were seen in:

• BFCL (Tool-calling) : ~2x

• GSM8K (Math) : ~35%

• IFEval-Hi (Instruction Following): ~25%
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Best Practices & Key Learnings
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Conclusion

• We propose LLM based selective translation as a de-facto method for translating the alignment data.

• We introduce two novel quality filtering techniques specific to alignment data (FAITH & Alignment Filtering).

• Extensive ablation studies provide concrete evidence that our LLM-based approach is the key driver behind the 
significant improvements in the downstream tasks.

• We created Nemotron-Hindi-4B-Instruct-4B v2, which sets a new performance standard by achieving significant 
gains on key benchmarks (GSM8K, BFCL, IFEVAL), surpassing its predecessor.

• This work provides a framework of best practices and key learnings for effectively aligning multilingual LLMs with 
low-resource languages.
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Q&A
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Selective Translation
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Faith Filtering
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Alignment Filtering
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Fluency Evaluation
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