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BHASHA Task 1 (IndicGEC):
Minimal-Edit Instruction Tuning
for Low-Resource Indic GEC
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Grammatical Error Correction (GEC) for In-
dic languages remains challenging due to
scarce supervision, rich morphology, and
script-specific orthography (e.g., Devana-
ogari and Malayalam ligatures and punctu-
ation). Under low-resource settings, ag-
gressive rewriting or paraphrasing can re-
duce reference overlap and harm shared-
task metrics based on n-gram similarity.

We target an augmentation-free, repro-
ducible GEC setup for Hindi and Malay-
alam that encourages minimal, meaning-
preserving edits. Our key idea Is to com-
bine instruction tuning with deterministic
decoding and a deterministic error analysis
that directly informs prompt design.

We adopt the official IndicGEC shared-task
splits (sentence-level correction with paired
noisy — corrected references).

Language Train Dev Test

Hindi 600 107/ 236
Malayalam 300 50 102

Table 1. Official IndicGEC splits used in our
experiments.

Pre-processing (no synthetic augmenta-
tion):

Unicode cleanup (remove invisible
artifacts), whitespace normalization

Punctuation normalization (script-aware)

Remove null/duplicate entries where
applicable
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Figure 1. Hindi example: Input — System
Output — Reference.
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Figure 2. Malayalam example: Input —
System Output — Reference.
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Given a noisy Hindi/Malayalam sentence,
generate a corrected sentence that fixes
grammatical, orthographic, and punctua-
tion errors while preserving meaning and
making the fewest necessary edits. The
system should avoid paraphrasing and un-
controlled rewriting, since the shared-
task evaluation uses untuned GLEU (n-
gram overlap with references).

Our system is a two-stage pipeline:

Stage 1: Instruction Fine-Tuning (IFT)

Backbone: Gemma 3 12B Instruct

Training: bnb 4-bit checkpoint with
PEFT/LoRA adapters via Unsloth

Supervision: Alpaca-style (Instruction /
Input / Response)

Objective: enforce minimal-edit behavior
(no paraphrase, keep entities/numbers)

Stage 2: Deterministic Inference + Light
Normalizer

Greedy decoding (no sampling) for stable,
locality-preserving edits

Normalizer: surface-only cleanup
(whitespace, punctuation spacing,
terminal marks, remove prompt echo) —
no rewriting

Deterministic Error Analysis — Prompt De-
Sign

A deterministic classifier labels each sen-
tence pair with one of nine categories:

Null/Empty, No Error,
Punctuation/Whitespace, Word Order,

Missing/Extra Word, Syntax/Agreement,
Morphology, Spelling/Orthography,
General Grammar

We compute category distributions and
use them to build fixed, language-specific
prompts that prioritize safe edits (punctua-
tion/morphology) and explicitly de-prioritize
risky operations (large reordering/deletions)
unless necessary.
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Figure 3. Error Labels identified by the
deterministic error classifier

Official shared-task metric: untuned GLEU.
GLEU measures n-gram overlap between
system output and reference (no parameter
tuning). This incentivizes conservative, min-
Imal edits and penalizes paraphrases even if
fluent.

Design implications:

Prompt constraints to discourage
rewriting

Surface normalizer to reduce trivial
mismatch (spacing/punctuation)

Language Test GLEU Rank

Malayalam 92.41 6th
Hindi 81.44  3rd

Table 2. Official IndicGEC test results under

untuned GLEU.

Takeaway: Minimal-edit IFT + deterministic

inference provides a strong, augmentation-

free baseline under strict low-resource con-

straints.
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