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INTRODUCTION

The Grammatical Error Correction (GEC) focuses on automatically detecting and correcting 

errors in written text, including spelling mistakes, grammatical inconsistencies, punctuation 

errors, and word choice issues. While significant progress has been made for high-resource 

languages, GEC for Indic languages face severe challenges, notably data scarcity and 

morphological complexity.

KEY CHALLENGES

Extreme Data Scarcity: IndicGEC provides only 91 training pairs for Tamil, compared to 

millions for English.

Morphological Complexity: Both languages exhibit agglutinative morphology with rich 

inflectional systems and complex verb conjugations.

Script Complexity: Unique Unicode challenges, including chillu character variations in 

Malayalam.

RATIONALE IN THE CHOICE OF THE MODEL: NEUROSYMBOLIC MODEL

Our hybrid neurosymbolic architecture leverages complementary strengths to overcome the 

limitations of pure neural or rule-based approaches in low-resource settings.

RELATED WORKS

Recent GEC research, especially for English, has been dominated by neural approaches where 

Transformer-based models and large pre-trained models like BART and T5 achieved state-of-

the-art results (Zhao et al., 2019; Kaneko et al., 2020; Katsumata and Komachi, 2020; Rothe et 

al., 2021). 

Low-resource GEC remains challenging, with researchers exploring synthetic data generation 

for Czech GEC (Naplava and Straka, 2019) and feedback comment generation for low-resource 

languages (Flachs et al., 2021). Our work differs from these by combining neural and symbolic 

approaches with explicit safety mechanisms, specifically, for extremely low-resource settings.

Multilingual models such as mBART and mT5 exhibit promising potential for cross-lingual 

transfer (Liu et al., 2020; Xue et al., 2021). Complementing this, Rothe et al. (2021) 

demonstrated that mT5 fine-tuning can achieve competitive GEC performance. 

The neurosymbolic approach combines neural learning with symbolic reasoning. Recent works 

in this area include neural symbolic parsers, hybrid question answering, and rule-augmented 

neural models (Platanios et al., 2021; Mitra and Baral, 2016). For GEC specifically, Awasthi et 

al. (2019) combined neural models with rule-based post-editing for English.

Hu et al. (2021) demonstrated that LoRA (Low-Rank Adaptation) enables efficient fine-tuning 

by injecting trainable low-rank matrices into frozen pre-trained models, reducing trainable 

parameters by over 99% while maintaining performance.

LANGUAGE MODEL SELECTION FOR SEQUENCE-TO-SEQUENCE GEC

While monolingual BERT-based encoder models exist for both Tamil (l3cube-pune/tamil-bert) 

and Malayalam (l3cube-pune/malayalam-bert), these models are fundamentally unsuitable for 

GEC tasks due to their encoder-only architecture. GEC is inherently a sequence-to-sequence 

task requiring both encoding input sentences and generating corrected outputs, necessitating 

encoder-decoder architectures like T5 or BART.

BERT-based models, being encoder-only, can only produce contextual representations and are 

designed for classification, token labelling, or extraction tasks rather than text generation. 

Adapting BERT for generation would require adding a decoder component from scratch, 

essentially reconstructing an encoder-decoder model without the benefits of pre-trained 

generation capabilities. Furthermore, no production-ready monolingual T5-style encoder-

decoder models exist for Tamil or Malayalam in public repositories. While researchers have 

created language-specific adaptations by pruning multilingual models (e.g., Russian T5), similar 

efforts for Dravidian languages remain unpublished or unavailable.

Therefore, we leverage mT5, a multilingual T5 variant pre-trained on 101 languages including 

Tamil and Malayalam, which provides the necessary encoder-decoder architecture for GEC 

while offering cross-lingual transfer benefits from related languages. The mT5 family's 

availability in multiple sizes (small, base, large) enables capacity-driven design choices suitable 

for our low-resource setting, as demonstrated in our ablation studies.

SYSTEM ARCHITECTURE

We present differentiated frameworks for Tamil and Malayalam GEC, reflecting language-

specific requirements. This differentiation reflects Tamil’s morphological complexity, which 

requires greater model capacity, and Malayalam’s higher observed risk of neural over-

correction, requiring conservative safety mechanisms.

Tamil GEC Architecture

The Tamil system employs a five-stage hierarchical pipeline that combines neural and symbolic 

approaches strategically. This prioritises correction coverage for complex morphology:

1. Marker Extraction: Regex-based isolation of formatting elements (-, ;-) from linguistic 

content

2. Rule-Based Priority Checking: Exact matching against sentence templates and training data; 

immediate return if matched

3. Neural  Generation: mT5-base with LoRA adaptation, beam search (width 6, length penalty 

0.8, repetition penalty 1.1)

4. Pattern Enhancement: Application of 25+ manual Tamil error patterns to refine neural outputs

5. Marker Reattachment: Deterministic restoration of original formatting

Malayalam GEC Architecture

The Malayalam system employs a conservative parallel processing pipeline with safety-first 

ensemble selection.  This prioritises output reliability and stability:

1. Exact Match Check: Validation against learned corrections dictionary; immediate return if 

matched

2. Parallel Processing: Simultaneous neural generation (mT5-small + LoRA) and rule-based 

candidate preparation

3. Safety Validation: Neural outputs undergo comprehensive validation (character presence, 

token overlap, length ratios, deletion thresholds)

4. Ensemble Selection: Confidence-based choice between neural output, rule-based candidate, or 

original input fallback

5. Explicit Tracking: Usage statistics (neural used, rule used, exact used, fallback used) for 

transparency.

RESULTS AND DISCUSSSION

Dataset and Evaluation Setup:

- Tamil: 91 training pairs (augmented to 5,000), 16 validation pairs, 65 test inputs

- Malayalam: Limited training pairs (augmented to 10,000), validation set available, 102 test 

inputs

- Blind test evaluation: No gold standard outputs provided, simulating real-world deployment

- Primary metric: GLEU (balancing n-gram precision and recall)

Performance Analysis

Blind Test evaluation metrics

DATA AUGMENTATION AND TRAINING

Data augmentation strategies were designed specifically for each language to mitigate data 

scarcity through controlled noise injection

Data Augmentation Strategies

Rationale:

Controlled noise injection mimics natural error patterns while maintaining linguistic validity. 

Quality filtering prevents learning spurious noise patterns

Configuration balances training efficiency with model quality for extremely low-resource 

settings, preventing overfitting while enabling effective adaptation.

ABLATION STUDY: MODEL CAPACITY ANALYSIS

To validate language-specific model selection, we conducted ablation experiments by swapping 

mT5 variants

Key Findings from the Ablation Study:

1. Reduction from mT5-base to mT5-small resulted in substantial 5.30 percentage point GLEU 

degradation, demonstrating that Tamil's complex agglutinative morphology with extensive case 

marking and verb conjugations genuinely benefits from higher representational capacity (580M 

parameters, 12 layers).

2. Increasing capacity from mT5-small to mT5-base yielded negligible performance difference 

(0.18 points), with preliminary analysis revealing increased generation instability in larger model. 

This validates our conservative approach: lower capacity with strict safety validation provides 

optimal balance.

Thus, the ablation study empirically validates that our model selection was data-driven rather 

than arbitrary, reflecting fundamental differences in language complexity and dataset-specific 

generation stability characteristics.

ERROR ANALYSIS

Error analysis on test sets revealed the systems' capabilities across diverse error types. 

Error Analysis: Tamil and Malayalam

DISCUSSIONS

Extremely low resource GEC requires hybrid approaches with optimal balance between the 

neural and symbolic rule-based components depending on the language characteristics, dataset 

size, and deployment priorities. While direct comparison remains limited due to novel datasets, 

our results surpass reported low-resource GEC performance. Czech GEC with synthetic 

augmentation achieved approximately 60-70% accuracy with similar data constraints (Naplava & 

Straka, 2019), while our hybrid approach achieved 85.34% GLEU for Tamil and 95.06% GLEU 

for Malayalam, demonstrating viability for extreme low-resource scenarios. 

LIMITATIONS AND FUTURE WORK

Limitations include:

1. Statististical Confidence: Small training (91 examples for Tamil) and validation datasets (16 

examples for Tamil) limit statistical confidence in generalization.

2. Pattern Coverage Gaps:Manual patterns for Tamil (25+) and automated phrase-level 

extraction for Malayalam (6-token limit) cannot exhaustively address all possible 

grammatical errors.

3. Architectural Limitations: Ablation experiments conducted only with mT5 variants; 

alternative multilingual encoder-decoder architectures (mBART, ByT5) unexplored.

Future Research Directions

1. Adaptive Safety Mechanisms: Develop dynamic threshold adjustment based on input 

characteristics 

2. Cross-Lingual Transfer: Investigate knowledge transfer between related Dravidian 

languages.

3. Automated Pattern Discovery: Explore grammar induction or constituency parsing for 

automated pattern discovery

4. Monolingual Model Development: Address resource gap by developing production-ready 

monolingual T5-style encoder-decoder models for Dravidian languages 

CONCLUSION

The Neurosymbolic systems prove that combining modern pre-trained models, parameter-

efficient fine-tuning, aggressive augmentation, and linguistic rule engineering provides a 

powerful practical approach for GEC.
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Pure Neural Models

 

Require millions of 

training examples, 

leading to severe 

overfitting with 

limited data (e.g., 91 

examples for Tamil). 

Exhibit unpredictable 

generation behaviours 

and lack deterministic 

guarantees.

Pure Rule-Based 

Systems: 

Provide perfect 

accuracy on explicitly 

encoded patterns but 

lack generalisation to 

unseen error types. 

Cannot correct novel 

errors not captured in 

manual rules.

Neurosymbolic 

Solution: 

Combines the 

generalisation of 

neural models with 

the precision of 

symbolic rules, 

enhanced by 

augmented data and 

intelligent ensemble 

selection.

+ =

Tamil Augmentation (91 → 5,000 

examples

Malayalam Augmentation (→ 10,000 

examples)

- Vowel dropping: Targeting 12 Tamil vowels 

(அ, ஆ, இ, ஈ, உ, ஊ, எ, ஏ, ஒ, ஓ, ஐ, 

ஔ)

- Character duplication and deletion

- Punctuation perturbation

- Word order shuffling

- Each sentence underwent 1-2 random 

transformations (55-fold expansion)

- Vowel sign dropping: Targeting 12 

Malayalam vowel signs (ാ , ാ , ാ , ാ , ാ , 

ാ , ൊ, ോ, ൈാ, ൊ , ോ , ൊ )

- Safe character duplication/deletion 

(avoiding first two characters to prevent 

catastrophic truncation)

- Adjacent word swapping (excluding first 

word to maintain sentence structure)

- Comma spacing removal and punctuation 

normalization

- Chillu variation handling: Modern-

traditional pairs (ൻ/ന്, ൺ/ണ്, ൽ/ല്, 

ൾ/ള്, ർ/ര്, ൿ/ക്)

- Quality filtering: Similarity filtering (0.6-

0.98) and length preservation (≥50% 

original)

Input Sentence Hybrid Output Correction Type

-த ொழிற்சொலை 

இயந்தி ்தின் ச ் ம் 

thozhilsaalai iyandhithithin 

sattham / "factory mashine's 

noise"

த ொழிற்சொலை 

இயந்திர ்தின்  ச ் ம் 

thozhilsaalai iyanthirathin 

sattham / "factory machine's 

noise"

Morphological
இயந்தி  ்→ இயந்திர
iyandhithith → iyanthira

-ப ொக்குவர த்ு 

வொகணங்களின் 

ஹொரன்

-pokku varatthu vaakanangalin 

haaran / "traffic vehikles' hron"

ப ொக்குவர த்ு 
வொகனங்களின்  

ஹொரன்்

pokku varatthu 

vaahanangalin haarn / 

"traffic vehicles' horn"

Multi-token . ஹொரன்் -- 

ஹொரன் ; வொகணம் → 

வொகனம், 

haaran → haarn, vaakanam 

→ vaahanam

இரயிை்  யன ்திை் 

கலள த்ு ் ப ொன 

எங்களுக்கு

irayil payaṉattil kaḷaittup pōṉa 

eṅkaḷukku / "train journey in 

tired gone for us"

ரயிை்  யண ்திை் 

கலள த்ு ப ொன 

எங்களுக்கு

rayil payaṇattil kaḷaittu pōṉa 

eṅkaḷukku / "train journey in 

tired gone for us"

Multiple Errors

இரயிை் → 

ரயிை், யனம் → 

 யணம்,

irayil → rayil, payaṉam → 

payaṇam

വ കണം ഓട ച്ച 

vaakanam odichchu / "vehikle 

drove"

വ ഹനം ഓട ച്ച 

vaahanam odichchu / 

"vehicle drove"

Spelling correction

വ കണം → വ ഹനം 

/ vaakanam → vaahanam

ധ്വന  

മല ന കരണത്ത ന് 

ക രണങ്ങൾ

dhvani malineekarana̠ththinu 

kāran̠aṅṅaḷ / "noise pollution's 

reasons"

ധ്വന  

മല ന കരണത്ത ന് 

ക രണങ്ങൾ

dhvani malineekarana̠ththinu 

kāran̠aṅṅaḷ / "noise 

pollution's reasons"

Token-level preservation

Language Model Configuration Validation GLEU Performance Delta 

Tamil mT5-base (proposed) 80.47% Baseline

Tamil mT5-small 75.17% -5.30% 

Malayalam mT5-small (proposed) 55.21% Baseline

Malayalam mT5-base 55.03% -0.18% 
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