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Abstract
Problem: Traditional OCR struggles with complex Hindi script features like conjuncts and matras,
especially in historical or degraded documents. m
Solution: We propose a novel Graph Convolutional Network (GCN) framework to verify OCR e dicﬂon
predictions by comparing real book images against synthetic images generated from OCR output. ealbook image
Method: The model extracts features using ResNet-50 and constructs a line graph where nodes Otsu m

. Thresholdmg
represent character pairs.

Features: Verification uses semantic (Cross-Entropy) and geometric features (Hu moments, Pixel
count) to detect errors.
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Comparison of GNN Architectures Performance of Patching Strategies l l
Model Patching Seena
Architecture Precision Recall F1-Score Strategy Precision Recall F1-Score cads
Our Model l 1
(3-Layer GCN) 0.7357 0.4285 0.5413 Akshar-level 0.6727 0.6926 0.6825 sl okl oot
APPNPNet 0.6727 0.6826 0.6825 Character-level 0.5363 0.726 0.6169
TAGNet 0.6726 0.6603 0.6485 Random Patch 0.624 0.6602 0.6416
GATConv 0.6571 0.6309 0.6067 Uniform Patch 0.5327 0.7051 0.6069

]?lllr 3-:_ayer GCN achieves the highest precision, minimizing Linguistically informed "Akshar-level" patching performs best.
alse alarms.
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Conclusion Uniform Patch Uniform Patch
Effectiveness: The framework effectively verifies OCR in diverse Hindi documents, specifically ' | | g |
targeting challenging conjunct characters. AR RO AT | A
Linguistic Alignment: Aligning feature segmentation with Hindi linguistic structure (Akshara-level) S M s
significantly outperforms random or uniform segmentation.
Future Scope: We plan to extend this approach to other Indic scripts and integrate attention
mechanisms to capture broader contextual dependencies.
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