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Conclusion and References

Our Approach

The Problem: Multilingual LLMs struggle with low-resource 
languages, where native high-quality data is scarce and 
expensive to curate.

Translation Flaws: Standard translation of English data is a 
common workaround but often corrupts technical elements 
like code, math, and JSON.

The Solution: We propose LLM-based selective translation, a 
technique that translates natural text while strictly 
preserving non-translatable structures.

Methodology: The study specifically focuses on Hindi, 
benchmarking translations generated by Google Cloud 
Platform (GCP) against Llama-3.1-405B.

Optimization Strategies: We investigate critical 
implementation factors, including the necessity of filtering 
noisy outputs and the benefits of mixing translated samples 
with original English data.

Key Findings: Results confirm that selective translation is a 
practical and effective method for bridging the alignment 
gap in multilingual models.
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Results

Our Approach:  
● Translation: The English post-training dataset is 

translated using a selective translation approach 
powered by the Llama-3.1-405B model.

● Filtering: The translated data is filtered using an 
LLM-as-a-judge framework, where translation quality is 
scored by the LLM and samples falling below a 
predefined threshold are removed.
a. FAITH Filtering - Rates translation quality on basis 

of Fluency, Accuracy, Idiomaticity, Terminology, 
Handling of Format.

b. Alignment Filtering (Prompt-Response) - 
Coherence between the translated query and 
translated response.

● Training: The same strategy is used for both supervised 
fine-tuning (SFT) and direct preference optimization 
(DPO) stages to train the 4B model.

Full Paper: https://arxiv.org/pdf/2507.14304  

Figure 2: English to Hindi translation examples using LLM-based selective translation and vanilla GCP translation.

Key Findings
● Models trained on Llama-3.1-405B translations outperform those 

using GCP translations across all benchmarks.  
● Adding Hindi data alongside English greatly enhances 

performance, even with just 20k high quality samples.  
● When applied to Nemotron-4-Mini-Hindi-4B, our selective 

translation recipe yielded a 35% gain on GSM8K, a 2× 
improvement in tool calling, and a 25% increase in 
instruction-following performance.

Motivation: Lack of Multilingual Post-Training Datasets
● Significant performance gap exists in multilingual LLMs 

for low-resource languages.
● Lack of high-quality alignment data (SFT/RLHF) for 

low-resource languages hinders model performance.
● Existing datasets have limited coverage and poor data 

quality.
● Large-scale alignment requires at least 100k samples 

each for SFT and RLHF.
● Collecting and labeling data in that scale for 

non-English languages is costly and time-consuming.

Conclusion
● We propose LLM based selective translation as a de-facto method 

for translating the alignment data.
● We introduce two novel quality filtering techniques specific to 

alignment data (FAITH & Alignment Filtering).
● Extensive ablation studies provide concrete evidence that our 

LLM-based approach is the key driver behind the significant 
improvements in the downstream tasks.
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Figure 1: Hybrid approach for selective translation 
based data curation pipeline with safety considerations. 
The unsafe queries contain harmful, biased, or  
inappropriate content that LLMs typically decline 
to translate.

Figure 4: Percentage of LLM and GCP translated SFT data filtered 
by the Llama-3.1-Nemotron-70B-Instruct judge model, representing 
samples not achieving full scores in FAITH evaluation.  (Lower the 
better) 

Figure 5: A/B comparison of translation quality, judged by 
Llama-3.1-  Nemotron-70B-Instruct. The graph illustrates the 
percentage preference for LLM, GCP, both, or neither across 
various SFT dataset categories  (Higher the better) 

 

Key findings:
● LLM-based translations have always been preferred by the 

judge over GCP with win rate of 17%.
● These preferences are especially strong in coding, 

tool-calling, and mathematical data.
● LLM-based translations score higher in fluency and are 

preferred over GCP for key tasks.
● We are able to achieve the same accuracy using half the data, 

thus improving the training efficiency.

Figure 6: Impact of Quality Filtering on Benchmark Performance 
Across Diverse Datasets

Figure 3: Overall training pipeline comprising 
translation, filtering, SFT, and DPO stages.
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